Deglacial Dust Provenance Changes in the Eastern Equatorial Pacific and Implications for ITCZ Movement
Abstract
The provenance of the eolian dust component of deep-sea sediments has the potential to offer insights into changes in past atmospheric circulation patterns. Measuring temporal changes in dust provenance can shed more light on changes in the position of the Intertropical Convergence Zone (ITCZ), a region in which dust is removed from the upper troposphere by deep convection and scavenged by precipitation. The ITCZ should, therefore, act as a barrier separating wind-blown northern versus southern sources. Perhaps the best way to trace for provenance of dust sources is through the measurement of radiogenic isotope ratios. Here, we have analyzed Nd, Sr, and Pb isotope ratios in the detrital components extracted from deep-sea sediments in the eastern equatorial Pacific (EEP) along a meridional transect at 110W from 3S to 7N (ODP Leg 138, Sites 848 - 853). At each site, the sediments ranged in age from 0 to 25 ka. Detrital component extraction involved the chemical removal of the biogenic and authigenic sedimentary fractions. Preliminary detrital Nd isotope ratios show a range of 2.4 ɛNd units (from -5.7 to -3.3). There are distinct latitudinal trends in the ɛNd values, with more radiogenic values further south and less radiogenic values further north. This distinction holds true for both Holocene and glacial time. The difference in Nd isotope ratios at any one site between Holocene and glacial is smaller for the sites furthest North. The greatest Holocene-glacial differences in ɛNd occur at sites south of 3N, suggesting a distinct detrital component boundary at this latitude. The sites furthest north (7N and 5.29N) show the greatest variability in detrital 87Sr/86Sr isotope ratios, while sites furthest south (equator and 1.5N) show negligible variability. The detrital component of sediment at Site 851 (2.77N) has a Sr isotope variability that is intermediate between the northern and southern values, again suggesting a detrital boundary of some sort. We interpreted these preliminary results to suggest that the ITCZ position was displaced toward the south, with a paleo-position located between Site 851 (2.77N) and Site 852 (5.29N), from its average current location, which is approximately 7N. This supports one hypothesis put forward by McGee et al. [1], based on changes in dust flux for the same transect, that the ITCZ was displaced toward the south during the last glacial period. [1] McGee et al., 2007, EPSL 257, 215-230 .
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFMPP21B1344X
- Keywords:
-
- 1065 GEOCHEMISTRY / Major and trace element geochemistry;
- 1616 GLOBAL CHANGE / Climate variability;
- 4904 PALEOCEANOGRAPHY / Atmospheric transport and circulation;
- 4924 PALEOCEANOGRAPHY / Geochemical tracers