Climate Proxy Signals in the Plio-Pleistocene Chemeron and Miocene Lukeino Formations, Baringo Basin, Kenya
Abstract
The Chemeron Formation is a hominin-bearing, highly fossiliferous sequence of dominantly alluvial fan and fluvial sedimentary rocks, with climatically significant lacustrine intercalations, exposed within the Tugen Hills of the central Kenya Rift. As we have previously documented (Deino et al., 2006; Kingston et al., 2007), the formation contains a sequence of five 3-7 m thick diatomites in the interval 2.7-2.5 Ma that record, at precessional intervals, the repeated occurrence of deep-lake conditions in the Baringo Basin. These lakes appear abruptly, persist for only about 8,000 years of the ~23,000 year precessional cycle, and recede quickly. The oscillations have been tied to marine core and Mediterranean sapropel sections based on high-precision 40Ar/39Ar dating of K-feldspar in tuffs interspersed through the sequence, and paleomagnetic reversal stratigraphy. Ongoing paleontological investigations in the Tugen Hills are addressing the dynamics of high-resolution faunal and ecological change directly related to the fluctuating climatic background, including its effect on hominin evolution. This specific interval in the Baringo Basin/Tugen Hills has been identified by the Hominid Sites and Paleolakes Drilling Project Steering Committee as one of five target areas in East Africa for high-resolution coring studies. The drilling project is currently moving forward to the funding agency proposal development phase. Further exploration in the Tugen Hills has revealed a similar, older sequence of rhythmic alternating diatomites and non-lacustrine sediments in nearby drainages. These beds may represent a precessionally driven climate response possibly associated with the next older orbital eccentricity maximum from ~3.2-2.9 Ma. Characterization of the lithostratigraphy of this area is in progress, and samples of intercalated tuff beds suitable for high-precision single-crystal 40Ar/39Ar dating have been acquired. We have also extended our search for climate proxy records in the Tugen Hills to diatomaceous sequences between ~8-6 Ma that would specifically implicate precessional control as a pervasive factor in the formation of rift lake systems and by inference climate. Reconnaissance in summer ’09 of these older strata have revealed extensive lacustrine deposits indicating that this portion of the rift was inundated by major lake systems during the upper Miocene.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFMPP13B1393D
- Keywords:
-
- 1145 GEOCHRONOLOGY / Tephrochronology;
- 1616 GLOBAL CHANGE / Climate variability