Modeling the erosion of tropical volcanic ocean islands : The Tahiti island case (French Polynesia)
Abstract
In this study, we are interested in modeling the erosion of the Tahiti island, with two main objectives: risk assessment (erodibility of terrains with rainfall, catastrophic runoffs) and estimation of subsidence rate. The Tahiti island created around 1.4 Myears ago by an intraplate hotspot (aerial radiometric dating), is divided into two geological units: the main island Tahiti-Nui to northwest (end of volcanism 200,000 years ago) and the subsidiary Tahiti-Iti to the southeast (end of volcanism 380,000 years ago). It is now volcanically inactive and is deeply dissected by erosion. Tahiti Nui is around 30 km in diameter, and Tahiti Iti around 15 km. Both are linked through the isthmus of Taravao. The highest elevation is 2241 m. The two sub-islands are basaltic edifices, with an overwhelming presence of oxisols (down to tens of meters in some places). Slopes can be divided into three classes: 15° for the global slope of the shield volcanoes, 47° for the incision valleys and 2° for the seashore rim. Rainfalls range from 8,000 mm/year on the East side of Tahiti (trade winds) to 2,000 mm/year on the West side, the humid season of a year is summer. This study is conducted to validate the Unit Stream Power Erosion and Deposition (USPED) model, an enrichment to the Universal Soil Loss Equation (USLE) to calculate average annual soil loss per unit land area resulting from rill and sheet erosion. The USPED model differs from other USLE models on how it handles the influence of topography on the erosion process, because USLE consider erosion only along the flow line without the influence of flow convergence/divergence. As the result, the USPED model predicts both erosion and deposition, while most other USLE-based models are limited to predictions of erosion only. The USLE, USPED equation can be written as A=R*K*LS*C*P where A is the soil loss, R the rainfall-runoff erosivity factor, K a soil erodibility factor, L a slope-length factor, S a slope steepness factor, C a cover-management factor and P a supporting practice factor. However, USPED adds a dimensionless index of sediment transport capacity and a topographic index, representing the change in transport capacity in the flow direction, to estimate the spatial distribution of both erosion and deposition. As an application, we show how this approach permits a better modeling of the soil losses in Tahiti with respect to the basic USLE-only approach, with both societal and risk-assessment benefits. Keywords: erosion, volcano, modeling, USLE, USPED
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFMNH43B1312Y
- Keywords:
-
- 1815 HYDROLOGY / Erosion;
- 1865 HYDROLOGY / Soils