Electromagnetic fields generated by constrained rotation of structural blocks in the Earth’s crust
Abstract
Specific features of low frequency electromagnetic impulses in the subsurface Earth’s crust with a low moisture content are defined by the tectonic activity of the region and its structure as well as the stressed-strained state. Electromagnetic effects related to seismic and deformation processes in rocks are very diverse and their physical nature is different. The electric polarization of rocks deserves special attention, since this mechanism is implied in an explosive loading of rocks or relaxation processes in any hierarchic block geophysical medium [1]. The amplitudes of electromagnetic pulses generated by electric currents in a relaxing block-structured stress-strained medium have been obtained by 3D numerical modeling. The source of currents is formed by electric polarization of solids filled inter-block gaps on the active face of a block which, in turn, rotates constrainedly under relaxation. The electric current impulse is defined by the shape of the seismic impulse of the block under relaxation. The block is embedded in the crust. The full system of Maxwell equations in a conductive medium has been solved. The numerical method used has been developed to describe properly the geometry of strain as well as impressed current and conductivity profiles at every time. The figure below presents the maximal amplitudes of electric fields Emax for different active block sizes L (curves 1, 2, 3) versus the relative distances from the source epicenter x/L. Here circles denote the experimental data obtained for the Kurai tectonic structure [1]. We see that the results of numerical simulations are in good agreement with the results of measurements. This proves the validity of our model for the estimation of electric effects in the low moisture rock medium. References: [1] S.P. Soloviev and A.A. Spivak, Doklady Earth Sciences, 2007, Vol. 417A, No. 9, pp. 1449-1453.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFMNH31C1126L
- Keywords:
-
- 0545 COMPUTATIONAL GEOPHYSICS / Modeling;
- 0560 COMPUTATIONAL GEOPHYSICS / Numerical solutions;
- 0600 ELECTROMAGNETICS;
- 7250 SEISMOLOGY / Transform faults