EFFECT OF NITROGEN AND METAL ADDITIONS ON NITROGEN FIXATION ACTIVITY IN BIOLOGICAL SOIL CRUSTS
Abstract
Biological soil crusts (BSCs) are diverse consortia of microorganisms that live in intimate association with soils in arid environments. Also called cryptogamic or microbiotic crusts, these communities can include cyanobacteria, algae, heterotrophic bacteria, fungi, lichens, and mosses. Together, these organisms provide many services to their surrounding ecosystems, including reduction of water runoff, promotion of water infiltration, and prevention of soil erosion. The cyanobacteria and algae also provide fixed carbon (C) to the soil through photosynthesis, and because atmospheric deposition of nitrogen (N) in arid environments is low, the major input of biologically available N comes from cyanobacteria capable of converting nitrogen gas (N2) to ammonium (NH4+). Biological soil crusts are easily destroyed by livestock grazing, motor vehicle travel, and many forms of recreational and agricultural land use. Loss of BSC cover can leave the soil vulnerable to intense erosion that can remove the nutrients necessary to sustain plant and animal life, thus accelerating the process of desertification. In order to preserve existing crusts and encourage the development of new crusts, it is crucial to understand the nutrient requirements of metabolism and growth in these microbial communities. This study investigated the affect of nitrogen and metal additions on N2-fixation activity in cyanobacterially-dominated crusts from the Colorado Plateau near Moab, Utah. Although N2-fixation has been studied in this system before, the affect of nutrient additions on N2-fixation activity has not been documented. The goal of this work was to understand how N and metal supplementation affects crust N metabolism. Three experiments were conducted to observe how N2-fixation activity changed with the addition of N, molybdenum (Mo), and vanadium (V). Molybdenum and vanadium were chosen because they are most commonly found at the active site of the enzyme nitrogenase, the molecule responsible for the biological conversion of N2 to NH4+. The Mo-dependent version of the enzyme is the most efficient, and it is used by the majority of N2-fixing organisms. Elements were added as aqueous solutions of NH4NO3, Na2MoO4, and Na3VO4 respectively. Nitrogen fixation potential was assayed using a modified acetylene reduction technique. Results from the N-addition experiment show that when N is provided, BSC organisms stop N2-fixation activity. This confirms that under natural conditions, the community is limited with respect to N. In general, crusts under Mo-addition fix at higher rates than crusts with no added Mo. This implies that crusts may also be limited with respect to Mo. However, contrary to our expectations, crusts fix at lower rates when V is added as compared to a no-V control. It is possible that this is the result of V-toxicity, or that V competes with the uptake and utilization of available Mo, thus exacerbating Mo-limitation. Experiments are currently underway to investigate how the geochemistry of the soil porewater changes as a result of these nutrient additions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFMEP53C0628A
- Keywords:
-
- 0448 BIOGEOSCIENCES / Geomicrobiology;
- 0456 BIOGEOSCIENCES / Life in extreme environments;
- 0489 BIOGEOSCIENCES / Trace element cycling;
- 1615 GLOBAL CHANGE / Biogeochemical cycles;
- processes;
- and modeling