Geochemical and Morphologic Evolution of Soil-Covered Hillslopes in the Feather River Basin, California: Responses to Channel Incision
Abstract
Tectonically driven changes in channel incision rates lead to changes in hillslope erosion rates that propagate upslope. In an effort to understand how these changes affect soil geochemistry, this study theoretically and empirically integrates sediment transport and chemical weathering. Here, we focus on a tributary basin of the Middle Folk Feather River (FR) in Sierra Nevada, California. This basin is adjusting to an increase in main stem channel incision that has resulted in rapidly eroding, steep hillslopes near the main stem channel and gentler, more slowly eroding slopes further upstream. To constrain how geomorphic signals (i.e., knickpoint) propagate upslope and affect soil geochemistry, soils were sampled in July 2009 along three hillslope transects within the FR basin: transect POMD (40% slope at 780m elevation), FTA (70% slope at 680m elevation), and BRC (90% slope at 630m elevation). To capture and bracket a coupled change in soil geochemistry upslope, transects were specifically chosen so that POMD is downstream of the knickpoint of the main channel, FTA in a transitional region, and BRC upstream of the knickpoint. Along each ~50 m transect, soil pits were dug <10 m apart of each other to depths of about 1m. CRN samples were collected from the upper saprolite and undisturbed B horizons to determine the soil production rates. For constraining soil mixing, sediment ages, and chemical weathering, OSL and geochemistry samples were collected every ~10 cm in the A, B, and saprolite horizons. Judging from the soil color, the abundances of pedogenic iron oxides systematically are greater in the less steep hillslopes. This is consistent with a preliminary view that the soils have briefer residence times in the steeper hillslopes, which have greater rates of channel incision at their lower boundaries. One contrast to our expectations, however, was that the soils were not consistently thicker in the gentler hillslopes, which presumably undergo reduced rates of soil erosion. Additionally, within each hillslope, soil thicknesses were largely constant, ~50-70 cm thick. Therefore, tree throw, which appears to be dominant soil production mechanism at the site, may be capable of buffering soil thickness against the variation of soil erosion rate. While we are still in the preliminary stages of the OSL and CRN work, transect profiles of major oxide elements Si, Al, Fe, Ca, Mg, Na, K, P, and Mn versus potentially immobile elements such as Zr and Ti in the soils are used to infer how channel incision affects soil geochemistry in the three hillslopes. In the future, these results will be coupled with LiDAR, OSL, CRN, and pore-water chemistry work for a more holistic view of how the morphology and geochemistry of hillslopes evolve together in their responses to tectonic forcing.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFMEP51B0593W
- Keywords:
-
- 1039 GEOCHEMISTRY / Alteration and weathering processes;
- 1130 GEOCHRONOLOGY / Geomorphological geochronology;
- 1826 HYDROLOGY / Geomorphology: hillslope;
- 1865 HYDROLOGY / Soils