Lava entering water: the different behaviour of aa and pahoehoe at the Nesjahraun, Thingvellir, Iceland
Abstract
The Nesjahraun is a basaltic lava flow that erupted 1800 years ago from a subaerial fissure extending NE from the Hengill central volcano along the Thingvellir graben. The Nesjahraun entered the lake "Thingvallavatn" on its southern shore and exemplifies lava flowing into water in a relatively sheltered, lacustrine environment. This study combines airborne LiDAR, sidescan sonar, and CHIRP seismic data with field observations to investigate the behaviour of the lava as it entered the water. The early stages of the eruption produced pahoehoe sheet lava that is exposed as stacks of thin, vesicular, flows (5-20 cm thick) resting upon and surrounding low (<5 m) piles of coarse, unconsolidated, variably-oxidised spatter. Clefts, 2-5 m wide, spaced ~50 m apart, and with subhorizontal striations on the walls, extend <50 m inland from the lake. They likely represent channels or collapsed tubes along which lava was delivered into the water. A circular littoral cone, Eldborg, formed when water infiltrated a lava tube. Offshore, the water deepens quickly, suggesting that this part of the flow ends as a steep talus ramp. Later, the flow focussed into an aa channel that split along the shore into individual flow lobes 1-50 m wide. Aa clinker is exposed on the water's edge, as well as glassy sand and gravel containing irregularly-shaped intrusions. The cores of the flow lobes contain coherent, but hackly-fractured lava. Mounds of lapilli-sized scoria and the large double cone of Grámelur were formed in littoral explosions. The aa flow can be identified over 1 km offshore in the CHIRP and sidescan data, the latter suggesting that the flow lobes remained coherent while flowing down a gradient of <10 degrees. The Nesjahraun demonstrates that, even in the absence of ocean waves, littoral explosions are ubiquitous, that pahoehoe flows advance by construction of a talus ramp, and that with a high flux and shallow gradient, it is possible for aa flows to penetrate water and to remain coherent over significant distances.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.V51D1749S
- Keywords:
-
- 3000 MARINE GEOLOGY AND GEOPHYSICS;
- 8414 VOLCANOLOGY / Eruption mechanisms and flow emplacement;
- 8416 VOLCANOLOGY / Mid-oceanic ridge processes;
- 8427 VOLCANOLOGY / Subaqueous volcanism