Fundamental Science for Geologic Carbon Sequestration: Molecular Probes for Understanding Wet CO2 Interaction with Caprock Minerals (Invited)
Abstract
Capture and storage of carbon dioxide and other greenhouse gases in deep geologic formations represents one of the most promising options for minimizing the impacts of greenhouse gases on climate change. A critical issue is to demonstrate in a scientifically defensible manner that CO2 will remain stored over the long-term in the geological formation where it is injected. With regards to mineral-fluid interaction, the majority of previous research has focused on mineral reactivity in aqueous solutions containing CO2. However, at the caprock-fluid interface, interaction with the supercritical CO2 (scCO2) phase itself may become more important as the buoyant plume slowly displaces or dessicates residual aqueous solution. Mechanisms of mineral interfacial reactions with wet or water-saturated CO2 are unknown. The measurement of kinetic and thermodynamic data for mineral transformation reactions in these fluids present unique challenges. New experimental tools under development at Pacific Northwest National Laboratory are enabling in situ characterization of mineral transformation processes in scCO2/H2O fluids with molecular resolution. 29Si and 13C magic angle sample spinning nuclear magnetic resonance spectroscopy of metal carbonation reactions of model magnesium silicate minerals (e.g., Mg2SiO4 forsterite) in scCO2 shows initial transformation to MgCO3 magnesite within 20 hours at 80 atm and 80°C only when water is present for nucleophilic attack on Mg-O-Si. High pressure infrared spectroscopy detects unique spectral signatures for H2O and D2O dissolved in trace quantities (<0.08M) in scCO2 and clearly shows carbonate species as reaction intermediates for forsterite transformation to magnesite. A high-pressure atomic force microscope is under development that will enable in situ site-specific measurements of metal carbonate nucleation and growth rates on mineral surfaces in contact with scCO2 fluids. High-pressure x-ray diffraction will enable phase identification in situ. Collectively, this set of capabilities provides a unique platform for elucidating the role of water for catalyzing mineral transformation to metal carbonates and provides a means for determining effective kinetic constants. Understanding and accurately representing chemical mechanisms will be critical for improving reactive transport reservoir simulations to the point that mineralization of CO2 to carbonates can ultimately be predicted in structurally complex and heterogeneous subsurface systems.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.U41A0002R
- Keywords:
-
- 1000 GEOCHEMISTRY;
- 1858 HYDROLOGY / Rocks: chemical properties