Experiments on granular rheology: effects of particle size and fluid viscosity
Abstract
We report the results of shear experiments of a thick layer of dry and liquid-saturated glass beads, a simplified model of fault gouge, in order to clarify and to compare how the particle size and fluid viscosity affect the granular rheology. We sheared sorted glass beads and measured the temporal variation of stress that fluctuates due to stick-slip behavior.We found that the stress drop and slip recurrence intervals increase with the particle size because of larger static bulk friction. The forms of stress - time series data for different particle size are not self-similar; it changes towards a saw-tooth-like temporal variation as the particle size increases, which can be characterized using two newly defined dimensionless numbers. In addition, we show that there is a continuous transition from constant slip velocity towards constant stress drop time as the particle size increases. We also determined the shear band width using the time-lapsed images of the sheared glass beads and found that the number of particles comprising the shear band decreases with the particle size. When the glass beads are saturated with viscous liquid, lubrication causes the rheology to change from frictional to viscous and to increase the slip recurrence interval, and these properties can be used to distinguish from the particle size effects. Under a fixed loading rate, there is a viscosity that minimizes the stress needed for shearing, at which we can separate the frictional and viscous regimes. Reference: Higashi, N. and I. Sumita, 2009, Experiments on granular rheology: effects of particle size and fluid viscosity, J. Geophys. Res., 114, B04413, doi.10.1029/2008JB005999 An example of raw time-series data of torque measurements during the time interval of 250 (s) for the dry glass beads sheared at 0.1 rpm. Here 1 torque% corresponds to 2.17 Pa.The solid and open circles indicate local maximum and minimum, respectively, which characterize each stick-slip event.The particle diameter d is d = 0.93mm, and fluid viscosity is η = 0.018mPas (air).
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.T41A1986S
- Keywords:
-
- 3902 MINERAL PHYSICS / Creep and deformation;
- 7209 SEISMOLOGY / Earthquake dynamics;
- 8118 TECTONOPHYSICS / Dynamics and mechanics of faulting;
- 8163 TECTONOPHYSICS / Rheology and friction of fault zones