Imaging of Heterogeneous Structure beneath the Metropolitan Tokyo Area
Abstract
Beneath the metropolitan Tokyo area, the Philippine Sea Plate (PSP) subducts and causes damaged mega-thrust earthquakes. The Dai-Dai-Toku Project revealed the geometry of the upper surface of PSP, and estimated a rupture process and a ground motion of the 1923 Kanto earthquake [Sato et al., 2005]. Hagiwara et al. (2006) estimated the velocity structure of Boso peninsula. However, these results are not sufficient for the assessment of the entire picture of the seismic hazards beneath the metropolitan Tokyo area including those due to an intra-slab M7+ earthquake. So, we have carried out a 5-year project since 2007, the Special Project for Earthquake Disaster Mitigation in the Metropolitan Tokyo area. Proving the more detailed geometry and physical properties (e.g. velocities, densities, attenuation) of PSP is very important to attain this issue. The core item of this project is the dense seismic array observation in metropolitan area, which is called the MeSO-net (Metropolitan Seismic Observation network). In order to obtain the high resolution images of a velocity structure, it is requested to construct a seismic network with a spacing of 2-5 km. The total number of seismic stations of the MeSO-net will be about 400 and will be deployed in 4 years. We deployed the 178 seismic stations, which construct 5 seismic arrays such as Tsukuba-Fujisawa (TF) array etc., by 2008, and we are now deploying the 45 seismic stations in this year. The MeSO-net data are quasi-real-time transferred to the data center at ERI [Kasahara et al., 2007; Nakagawa et al., 2007]. In this study, we applied the tomography to image the heterogeneous structure under the metropolitan Tokyo area. We selected events from the catalogue by Hagiwara et al. (2006) and merged the new event data observed by MeSO-net with these data. Around the Kanto region there are several seismic explorations using active sources were carried out [Sato et al., 2005; Oikawa et al., 2007]. Since these data may improve the velocity structure in shallower part, we added the arrival time data of these explorations into the dataset. Then, we applied the double-difference tomography method [Zhang and Thurber, 2003] to this dataset and estimated the fine-scale velocity structure. The initial velocity structure is the same in Hagiwara et al. (2006), and the VP/VS ratio is set to 1.73 for all grid nodes. The TF array passes directory above Tokyo and is parallel to Boso peninsula. The depth section of P-wave velocity structure along the TF array clearly shows that thin low-velocity layer which overlies high-velocity layer subducts towards northeast. This low-velocity layer corresponds to the oceanic crust of the subducting PSP. The increase of MeSO-net stations and event data may improve images of heterogeneous structure and contribute the purpose of this special project. Acknowledgement: This study was supported by the Earthquake Research Institute cooperative research program.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.T21C1815N
- Keywords:
-
- 7230 SEISMOLOGY / Seismicity and tectonics;
- 7240 SEISMOLOGY / Subduction zones;
- 8180 TECTONOPHYSICS / Tomography