A two-dimensional hybrid method for modeling seismic waves propagation in laterally-varying anisotropic media and its application to central Tibet
Abstract
The shear wave splitting measurements provide important information on mantle flow, deformation and mineralogy. They are now routinely made using the method developed by Silver and Chan (1994). More and more dense regional observations also begin to reveal sharp spatial variations of seismic anisotropy which could not be explained by simplified horizontal homogeneous anisotropic structures. To better constrain the mantle anisotropy beneath those regions, we developed a two-dimensional hybrid method for simulating seismic wave propagation in laterally-varying anisotropic media [Zhao et al., 2008]. In this presentation, we apply the method to study anisotropic structures beneath central Tibet by waveform modeling the teleseismic SKS phases recorded in the International Deep Profiling of Tibet and the Himalayas project (INDEPTH) III. Using data from two events that were selected such that the stations and sources can be approximated as a two-dimensional profile, we derived an optimal model for the anisotropic structures of the upper mantle beneath the study region: a 50-70 km thick anisotropic layer with a fast direction trending N95°E beneath the Qiangtang block, a 150 km thick and 60 km wide anisotropic segment with an axis trending N95°E beneath the northernmost Lhasa block, and a ~30 km wide transition zone in between within which the fast direction trends N45°E and the depth extent of anisotropy decreases northward sharply. Synthetic waveform modeling further suggests that an anisotropic model with a horizontal symmetry axis can explain the observations better than that with a dipping symmetry, and a low velocity zone possibly underlies or mixes with the anisotropic structures in the northern portion of the region. The optimal model yields synthetic seismograms that are in good agreement with the observations in both amplitudes and relative arrival times of SKS phases. Synthetic tests also indicate that different elastic constants, source parameters and depth extents of anisotropy adopted in the calculations do not affect the general conclusions, although trade-offs exist between the model parameters. Our modeling results suggest that, if the complex seismic structures in central Tibet are associated with the underthrusting of the Indian lithosphere beneath the Asian lithosphere, the inferred horizontal symmetry of anisotropy was likely generated during the collision because an inherited anisotropy would have a dipping angle of symmetry axis that is parallel to the underthrusting direction. References Silver, P. G., and M. K. Savage (1994), The interpretation of shear-wave splitting parameters in the presence of two anisotropic layers, Geophys. J. Int., 119, 949-963. Zhao L., L.X. Wen, L. Chen, T.Y. Zheng (2008). A two-dimensional hybrid method for modeling seismic wave propagation in anisotropic media, J. Geophys. Res., 113, B12307, doi:10.1029/2008JB005733.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.S13C..07Z
- Keywords:
-
- 7200 SEISMOLOGY;
- 7203 SEISMOLOGY / Body waves;
- 7290 SEISMOLOGY / Computational seismology