Colloid Transport in Porous Medium: Impact of High Salinity Solutions
Abstract
We explored the transport of colloids suspended in natural saline solutions with a wide range of ionic strengths, up to Dead Sea brines. Migration of latex microspheres through saturated sand columns of different sizes was studied in lab experiments, and colloid transport was simulated with a mathematical model. We have found that latex microspheres were mobile even in the extremely saline brines of the Dead Sea (ionic strength = 100.9 M). At this high ionic strength, according to the common colloid transport theories, no energetic barrier to colloid attachment exists and colloid adsorption was expected to be a favorable process. Apparently, even in that high salinity, colloids adsorption is not complete and ~20% colloids are allowed to transport (through 30-cm long column). Colloid transport was found to be related to the solution salinity, as expected. After 2-3 pore volumes (PV) the relative concentration of colloids at the outlet of 30-cm long columns decreased as the solution ionic strength increased until some critical value (ionic strength greater than 10-1.8 M) and then remained constant as the solution salinity increased. To further explore the sorption of colloids on sand surfaces in Dead Sea brines, breakthrough curves (BTCs) were studied using 7-cm long columns, through which hundreds of PV were introduced. The observed BTCs exhibited a bi-modal shape that suggests different rates of colloid attachment. After initial breakthrough the relative concentration of colloids at the outlet rose to a value of 0.8 (after 1.5 PV), and it remained relatively constant until approximately 17 PV were flushed through the column. After a total flow of about 20 PV, the relative concentration reached a value of one. The colloid migration process was successfully modeled using the limited entrapment model (Pachepsky et al., 2006), assuming the colloid attachment rate is dependent on the concentration of attached colloids.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.H43B1013W
- Keywords:
-
- 1800 HYDROLOGY