In situ Bioreduction of Uranium (VI) in Groundwater and Sediments with Edible Oil as the Electron Donor
Abstract
In situ bioremediation of a uranium-contaminated aquifer was conducted at the US DOE Environmental Remediation Sciences Program (ERSP) Integrated Field Research Challenge (IFRC) site, in Oak Ridge, TN. Edible oil was tested as a slow-release electron donor for microbially mediated U (VI) reduction. Uranium contaminated sediments from the site were used in laboratory microcosm tests to study the feasibility of using this electron donor under anaerobic, ambient temperature conditions. Parallel microcosms were established using ethanol as electron donor for comparison. The tests also examined the impact of sulfate concentrations on U (VI) reduction. The oil was degraded by indigenous microorganisms with acetate as a major product but at a much slower rate than ethanol. The rapid removal of U (VI) from the aqueous phase occurred concurrently with acetate production and sulfate reduction. Initial U(VI) concentration in the aqueous phase increased with increased sulfate concentration (1 vs. 5 mM), likely due to U(VI) desorption from the solid phase, but more U(VI) was reduced with higher initial sulfate level. Finally, the bioreaction in microcosms progressed to methanogenesis. Subsequently, a field test with the edible oil was conducted in a highly permeable gravelly layer (hydraulic conductivity 0.076 cm/sec). Groundwater at the site contained 5-6 μM U; 1.0-1.2 mM sulfate; 3-4 mM Ca; pH 6.8. Diluted emulsified oil (20% solution) was injected into three injection wells within 2 hrs. Geochemical analysis of site groundwater demonstrated the sequential reduction of nitrate, Mn, Fe(III) and sulfate. Transient accumulation of acetate was observed as an intermediate in the oil degradation. Reduction and removal of uranium from groundwater was observed in all wells connected to the injection wells after 2-4 weeks. Uranium concentrations in groundwater were reduced to below 0.126 μM (EPA drinking water standard), at some well locations. Rebound of U in groundwater was observed together with the rebound of sulfate concentrations as the oil was consumed. Uranium (VI) reduction to U (IV) in the microcosm and in situ field tests was confirmed by X-ray near-edge absorption spectroscopy analysis. Bacterial populations in microcosms and field samples were analyzed using 16S rRNA gene libraries and Geochip analysis.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.H31B0789W
- Keywords:
-
- 0418 BIOGEOSCIENCES / Bioremediation;
- 0461 BIOGEOSCIENCES / Metals;
- 0471 BIOGEOSCIENCES / Oxidation/reduction reactions;
- 1051 GEOCHEMISTRY / Sedimentary geochemistry