Predictability of Biogeochemical Responses in Engineered Watersheds
Abstract
Examining the impacts of large-scale human modifications of watersheds (e.g., land-use intensification for food production; hydrologic modification through extensive tile-drainage, etc.) on the hydrologic and biogeochemical responses, and ecological impacts at various scales has been the focus of monitoring and modeling studies over the past two decades. Complex interactions between hydrology and biogeochemistry and the need to predict responses across scales has led to the development of detailed process-based models that are computationally intensive and calibration-dependent. Our overall hypothesis is that human modifications and intensive management of these watersheds have led to more predictable responses, which are typical of engineered, less-complex systems rather than natural, complex systems. We examined monitoring data for nitrogen, phosphorous, silica and chloride in 25 large watersheds (10,000 km2 to 500,000 km2) in the Mississippi River Basin. This sparse dataset was complemented with nitrogen cycling and hydrology output from a whole-basin terrestrial and aquatic modeling system (IBIS-THMB). These sub-basins have diverse land uses, although agriculture still dominates (from ~30% to ~80%). Despite diversity in soils, geology, rainfall patterns, and land use, a linear relationship was observed between the annual cumulative discharge (Q; m3/yr) and the measured nitrate load (L; kg/yr). The slopes of these linear L-Q plots represent the flow-weighted annual average concentrations (Cf), and a linear L-Q relationship indicates an apparent “chemostatic” response of these large watersheds. Analysis of Mississippi River monitoring data for nitrate and IBIS-THMB simulations revealed that Cf is a strong function of land-use (eg, percent corn) that defines the chemical input function. The scatter around the L-Q plots was small for “endogenous” (generated from internal sources) solutes (eg, silica), intermediate for “hybrid” (contributions from both endogenous and exogenous sources) solutes (eg, nitrate), and maximum for exogenous (introduced from external sources) solutes (e.g., pesticides).
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.H13D0999Y
- Keywords:
-
- 1806 HYDROLOGY / Chemistry of fresh water;
- 1834 HYDROLOGY / Human impacts;
- 1871 HYDROLOGY / Surface water quality;
- 1879 HYDROLOGY / Watershed