Characterization of Coastal Hydraulics: Simple Tools and Sweat Equity
Abstract
Field efforts are targeted at providing characterization of surface / subsurface interaction along coastal Benin as part of an overall research effort examining coastal hydrology and salt-water intrusion near the large urban center of Cotonou, Benin. Specifically, efforts at adapting an existing numerical model indicate substantial sensitivity of the model results to assumed conditions in a vast region of interconnected fresh-water / salt-water lagoons which are home to a distributed human population. Limits on funding for this project resulted in choice of a series of field techniques that focused predominantly on manual labor (truly sweat equity of undergraduate and graduate students from Benin and the United States) in order to characterize the shallow (less than 10 meters) hydrology and geochemistry of this coastal region. An integrated picture is therefore being developed through application of shallow geochemical analysis to depths less than 10 meters (collection of samples using a manual direct-push drilling method based on a Geoprobe® apparatus and chemical analyses of Cl, Na, Br, Fl, and conductivity performed using specific-ion electrodes), monitoring of the rate of advance of the direct-push to determine vertical distribution of sediment resistance, a home-made falling-head field permeameter to measure shallow (less than 2 meters) permeabilities, manually installed, multi-level piezometers at several points within Lake Nokoue (a large, shallow-water lake bordering Cotonou and the southern coast), and electrical resistivity imaging (using an entry-level resistivity assembly). All tests are performed by students and faculty from the U.S. and Benin, with plans in place for the Benin students to return multiple times per year to monitor changes at the field stations. Results to date have provided significant insight into spatial structure within the surface/subsurface that was not apparent in either satellite imagery or ground-level inspection of the region. Further, continuing measurements using the “home-made” piezometers and permeameter are providing opportunities for temporal data sets that would not otherwise be possible within the project budget, including access (via boats) to data in regions that are flooded during select times of the year. Finally, initial analysis of the data collected to date show interesting relationships among the various parameters measured, with significant potential in these relationships to both guide the calibration of the numerical model and provide valuable insight into the temporal variability of this coastal system. Implications from this work are that relatively simple tools (developed using classic hydrologic techniques combined with innovative use of local supplies) and sweat equity can provide valuable, if not entirely perfect, field methods for characterization of complex hydrologic systems in the absence of high-budget research programs.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.H11F0894M
- Keywords:
-
- 0925 EXPLORATION GEOPHYSICS / Magnetic and electrical methods;
- 1829 HYDROLOGY / Groundwater hydrology;
- 1830 HYDROLOGY / Groundwater/surface water interaction;
- 1895 HYDROLOGY / Instruments and techniques: monitoring