Study of landwater variation over Chao Phraya river basin using GRACE, satellite altimetry and in situ data
Abstract
A project to assess the effects of human activities on the subsurface environment in Asian developing cities has been in progress (Research Institute for Humanity and Nature, Japan, 2009). Bangkok, Thailand is one of the study cities in this project. Using GRACE satellite gravity data, we previously recovered landwater mass variation over the Chao Phraya river basin, where Bangkok is located on downstream. However, mainly because of insufficient spatial resolution of the GRACE data then released, it was difficult to distinguish mass variation over the Chao Phraya basin with the ones of the neighboring Mekong, Irrawaddy and Salween river basins. Recently, some new versions of GRACE data sets have been available, and thus we estimated again the mass variations over these basins using version 2 of CNS/GRGS data set. The result shows that mass variations of the each basin could be distinguished due to improvement of the spatial resolution of the data. One of the interesting things is that a negative interannual mass trend is observed only over the Chao Phraya river basin, while the other basins show positive trend values. One of our concerns was which of the landwater components were decreasing. Because GRACE can only detect total terrestrial water storage, we further used satellite altimeter data to separate surface- and groundwater components. EnviSat data were mainly used as satellite altimetry data in this study, because the mission period is overlapping with GRACE mission and the ground track separation is relatively small. River water levels were recovered from satellite altimetry data, and converted to river water storage. Estimated river water storage was subtracted from the GRACE data. Thus, interannual surface- and groundwater trends were discussed separately. Another concern is whether the landwater decrease is caused by meteorological factors or factors of human activities. Thus, we also compared above results with global hydrological simulation model and in-situ hydrological data observed in the project.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.G43B0737Y
- Keywords:
-
- 1217 GEODESY AND GRAVITY / Time variable gravity;
- 1240 GEODESY AND GRAVITY / Satellite geodesy: results;
- 1834 HYDROLOGY / Human impacts;
- 1855 HYDROLOGY / Remote sensing