Subglacial carbonate precipitates on central Baffin Island, Arctic Canada may constrain basal conditions for the Foxe sector of the Laurentide Ice Sheet
Abstract
Extensive, widespread carbonate deposits on gneissic bedrock have recently been discovered around the Barnes Ice Cap, central Baffin Island. Deposits range from conglomeratic crack-fillings ≤5 cm thick to laminated, striated films plastered on bedrock surfaces, often in the lee of obstacles. A single outcrop of these carbonates was first described by Andrews et al. (1972, Canadian Journal of Earth Sciences, 9, 233-238) and was interpreted as an early Tertiary limestone based on the presence of warm-climate palynomorphs including Liriodendron (tulip tree), Ulmus (elm), and Taxodium (cypress). However, recent fieldwork in the region has demonstrated that these carbonates are far more ubiquitous than previously thought and found on both glacially-polished bedrock surfaces and till boulders that melted out in recent decades from Laurentide ice at the base of the Barnes Ice Cap. In many cases, these carbonates exhibit the characteristic morphologies of subglacial carbonates (flutes, furrows, and striations parallel to the direction of ice flow, columnar spicules, and tufa-dam-like forms). A few deposits include angular sands, gravels, and pebbles. The nearest carbonate bedrock is Paleozoic limestone flooring Foxe Basin 130 km west of the Barnes Ice Cap summit. While subglacial carbonate deposits have been documented adjacent to retreating mountain and outlet glaciers and in areas previously covered by Pleistocene ice sheets, few localities are distant from carbonate bedrock. Thus, the carbon required for carbonate deposition in the Barnes region was either (1) derived from Paleozoic limestone and dissolved in subglacial water that was subject to long-distance transport, or (2) there was sufficient trapped atmospheric CO2 in the ice to yield alkaline basal meltwater which hydrolyzed calcium-bearing silicates in the local bedrock. Given the volume of carbonate deposited at some sites, we find the latter model unlikely. If the former model is applicable, these carbonates will provide considerable insight into subglacial processes beneath the Foxe sector of the Laurentide Ice Sheet and possibly constrain the former ice thicknesses above these sites. Quantitative x-ray diffraction defines the mineralogy of both the carbonate and clastic components. Carbon and strontium isotopes in the carbonate precipitates, Foxe Basin Paleozoic bedrock, and local bedrock should define the source of the carbon and calcium in the deposits. Oxygen isotopes of Barnes Ice Cap Laurentide ice and the carbonates provide a unique opportunity to compare the isotopic composition of subglacial carbonates with the isotopic composition of the actual ice sheet under which they were precipitated.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.C21A0427M
- Keywords:
-
- 0726 CRYOSPHERE / Ice sheets;
- 0768 CRYOSPHERE / Thermal regime;
- 0774 CRYOSPHERE / Dynamics;
- 1827 HYDROLOGY / Glaciology