Altered Carbon Isotope Discrimination of C3 Plants Under Very High pCO2 Levels
Abstract
Various modeling and proxy-based reconstructions of atmospheric pCO2 levels for the last 120 Ma have estimated RCO2 as high as 12x for the Early Cretaceous, generally decreasing into the Cenozoic, and decreasing further into the Quaternary. Multiple ecological studies to assess the effect of elevated CO2 on plant biomass and δ13C value have been spurred on by recent increases in greenhouse gases, however these studies typically grow plants under only slightly elevated CO2 levels (i.e., the twenty foremost studies published since 1990 involved 550 to 750 ppm pCO2, which equals RCO2 = 1.4 to 1.9x). In order to recreate the highest pCO2 environments of the last 120 Ma, we grew radish (Raphanus sativus L.) in growth chambers that maintained controlled environmental conditions and pCO2 levels ranging from ~5 to 11x that of today’s atmosphere (1791 to 4200 ppm); upon harvest we measured total biomass and stable carbon isotope ratio (δ13Cplant) in both above and below ground plant tissue. Unlike the 1:1 relationship between stable isotopes of atmospheric CO2 (δ13Catm) and δ13Cplant observed at lower pCO2 levels (i.e., RCO2 = 1x to 3x; Jahren et al., 2008), the δ13Cplant of biomass grown at more elevated RCO2 was dependent upon δ13Catm according to the linear relationship: δ13Cplant = 1.9(δ13Cplant) - 12.2 ‰ (r2 = 0.71). Concomitantly, we see a highly significant (p < 0.001) positive correlation between net carbon isotope discrimination in plant tissue and pCO2 level, with a change in the average Δδ13Cplant-atm in R. sativus L. from -27.0 to -28.0 ‰ at RCO2 = 5x to 11x, respectively. We will discuss possible mechanisms for changing isotope discrimination at very high pCO2 levels that may not be operative at lower concentrations. For example, we noted a striking reduction in the variability of biomass between plants grown at the same (very high) level of pCO2. This variability (calculated as the standard deviation of the log-transformed biomass data after Poorter and Garnier, 1996) decreased by 37 % (above-ground) and 48 % (below-ground) for plants grown at RCO2 > 5x compared to plants grown at RCO2 = 1x to 3x. We speculate that this decreased variability may reflect fundamentally altered patterns of net carbon uptake, which then affect net isotopic fractionation. A.H. Jahren, N.C. Arens and S.A. Harbeson, 2008. Prediction of atmospheric δ13CO2 using fossil plant tissues. Reviews of Geophysics, 46/2006RG0002. H. Poorter and E. Garnier, 1996. Plant growth analysis: an evaluation of experimental design and computational methods. Journal of Experimental Botany, 47/1343-1351.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.B53C0417P
- Keywords:
-
- 0428 BIOGEOSCIENCES / Carbon cycling;
- 0454 BIOGEOSCIENCES / Isotopic composition and chemistry;
- 0473 BIOGEOSCIENCES / Paleoclimatology and paleoceanography;
- 0476 BIOGEOSCIENCES / Plant ecology