Seasonal and spatial variation in soil chemistry and anaerobic processes in an Arctic ecosystem
Abstract
Drained thaw lake basins (DTLB) are the dominant landform in the Arctic coastal plain near Barrow, Alaska. Our previous work in a DTLB showed that Fe(III) and humic substances are important electron acceptors in anaerobic respiration, and play a significant role in the C cycle of these organic-rich soils. In the current study, we investigated seasonal and spatial patterns of availability of electron acceptors and labile substrate, redox conditions and microbial activity. Landscapes within DTLB contain complex, fine-scale topography arising from ice wedge polygons, which produce raised and lowered areas. One goal of our study was to determine the effects of microtopographic variation on the potential for Fe(III) reduction and other anaerobic processes. Additionally, the soil in the study site has a complex vertical structure, with an organic peat layer overlying a mineral layer, overlying permafrost. We described variations in soil chemistry across depth profiles into the permafrost. Finally, we installed an integrated electrode/potentiostat system to electrochemically monitor microbial activity in the soil. Topographically low areas differed from high areas in most of the measured variables: low areas had lower oxidation-reduction potential, higher pH and electrical conductivity. Soil pore water from low areas had higher concentrations of Fe(III), Fe(II), dissolved organic C (DOC), and aromaticity (UV absorbance at 260nm, “A260”). Low areas also had higher concentrations of dissolve CO2 and CH4 in soil pore water. Laboratory incubations of soil showed a trend toward higher potentials for Fe(III) reduction in topographically low areas. Clearly, ice wedge-induced microtopography exerts a strong control on microbial processes in this DTLB landscape, with increased anaerobic activity occurring in the wetter, depressed areas. Soil water extracted from 5-15 cm depth had higher concentrations of Fe(III), Fe(II), A260, and DOC compared to soil water sampled from 0-5cm. The soil depth profile showed highest concentrations of acid-extractable Fe in the mineral layer and permafrost, though Fe(III) was highest in the surface layer. Total and soluble C increased with depth, as did the potential for CO2 and CH4 production in anaerobic incubations. Thus, the mineral layer may be a significant source of Fe for oxidation-reduction reactions that occur at shallower depths, though methanogenesis dominates in the mineral layer, while Fe(III) reduction dominates in the organic layer. Most of the ions measured in the soil pore water (Fe(III), DOC, A260) showed the same general seasonal pattern: high concentrations soon after soils thawed, declining over time until mid-August. Concentrations of Fe(II) in soil pore water were fairly stable over time. There was a significant positive relationship between A260 and Fe(III) concentrations, possibly indicating the presence of microbially-produced aromatic chelating molecules. Potentiostat measurements confirmed the presence of an electrochemically active microbial community in the soil.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.B51F0349L
- Keywords:
-
- 0414 BIOGEOSCIENCES / Biogeochemical cycles;
- processes;
- and modeling;
- 0428 BIOGEOSCIENCES / Carbon cycling;
- 0461 BIOGEOSCIENCES / Metals;
- 0465 BIOGEOSCIENCES / Microbiology: ecology;
- physiology and genomics