Characterization of Aluminum-Binding Ligands in Pisolithus tinctorius
Abstract
Highly abundant in soil, Al is found in non-toxic forms under neutral pH conditions. However, when the pH of the soil decreases, the presence of cationic Al increases, creating a toxic environment for plants and fungi. Certain plants and their ectomycorrhizal symbiotic fungi have higher tolerance for Al in the soil and surrounding media. A particular fungus, Pisolithus tinctorius, has been found to produce Al-binding pigments which chelate and detoxify cationic Al in the environment. The objectives of this study are to 1) determine the resistance of different ectomycorrhizal fungi species to Al, 2) characterize the production of Al binding compounds by fungi, and 3) quantify Al partitioning between free and bound forms in the environment. Pisolithus tinctorius, Amanita muscaria, Lacaria bicolor, and Rhizopogon rubescens were grown under varying Al concentration in vitro (0 and 200 µM for all species; 0, 100, 200, and 400 µM for P. tinctorius). Biomass was measured and media was analyzed for Al speciation and organic acid profiles post experiment. The Al-binding exudates of P. tinctorius were isolated using immobilized metal affinity chromatography (IMAC) and further separated with reverse phase HPLC (UV). All fungi were resistant to Al at the concentrations tested. Pisolithus was found to have a significantly higher mass than other ectomycorrhizae studied. Organic Al levels were found to increase with an increase in Al treatment for P. tinctorius. These techniques revealed at least eleven compounds active in the Al-binding IMAC fraction with seven peaks having brown pigmentation. These compounds may assist in Al detoxification by P. tinctorius.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.B23E0424M
- Keywords:
-
- 0409 BIOGEOSCIENCES / Bioavailability: chemical speciation and complexati;
- 0418 BIOGEOSCIENCES / Bioremediation;
- 0461 BIOGEOSCIENCES / Metals