GCM simulations of cold dry Snowball Earth atmospheres
Abstract
We use the full-physics atmospheric general circulation model ECHAM5 to investigate cold and virtually dry Snowball Earth atmospheres. These result from specifying sea ice as the surface boundary condition everywhere, corresponding to a frozen aquaplanet, while keeping total solar irradiance at its present-day value of 1365 Wm-2 and setting atmospheric carbon dioxide to 300 ppmv. Here, we present four simulations corresponding to the four possible combinations of enabled or disabled diurnal and seasonal cycles. The aim of this study is twofold. First, we focus on the zonal-mean circulation of Snowball Earth atmospheres, which, due to missing moisture, might constitute an ideal though yet unexplored testbed for theories of atmospheric dynamics. Second, we investigate tropical surface temperatures with an emphasis on the impact of the diurnal and seasonal cycles. This will indicate whether the presence of the diurnal or seasonal cycle would facilitate or anticipate the escape from Snowball Earth conditions when total solar irradiance or atmospheric CO2 levels were increased. The dynamics of the tropical circulation in Snowball Earth atmospheres differs substantially from that in the modern atmosphere. The analysis of the mean zonal momentum budget reveals that the mean flow meridional advection of absolute vorticity is primarily balanced by vertical diffusion of zonal momentum. The contribution of eddies is found to be even smaller than the contribution of mean flow vertical advection of zonal momentum, the latter being usually neglected in theories for the Hadley circulation, at least in its upper tropospheric branch. Suppressing vertical diffusion of horizontal momentum above 850 hPa leads to a stronger Hadley circulation. This behaviour cannot be understood from axisymmetric models of the atmosphere, nor idealized atmospheric general circulation models, which both predict a weakening of the Hadley circulation when the vertical viscosity is decreased globally. We find that enabling the diurnal cycle does not change tropical annual-mean surface temperatures but significantly strengthens the Hadley circulation, which increases by 33% for equinoctial and by 50% during solstitial insolation conditions compared to simulations without diurnal cycle. Including the seasonal cycle results in a ''reversed'' annual-mean Hadley circulation with subsiding motion at the equator and ascending motion around 15N/S, a manifestation of the extreme seasonality of Snowball Earth atmospheres due to the low thermal inertia of the sea-ice surface. The impact of the seasonal cycle on the tropical annual-mean surface is a straightforward consequence of changes in insolation distribution: as annual-mean incoming shortwave radiation at the equator reduces by 18 Wm-2 for enabled seasonal cycle, tropical annual-mean surface temperatures decrease from 221 K to 217 K.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.A51L..06V
- Keywords:
-
- 0343 ATMOSPHERIC COMPOSITION AND STRUCTURE / Planetary atmospheres;
- 3319 ATMOSPHERIC PROCESSES / General circulation;
- 3337 ATMOSPHERIC PROCESSES / Global climate models;
- 3367 ATMOSPHERIC PROCESSES / Theoretical modeling