A Regional Modeling Study of Climate Change Impacts on Warm-Season Precipitation in the Central U.S
Abstract
In this study, the Weather Research and Forecasting (WRF) model is employed as a nested regional climate model to dynamically downscale output from the National Center for Atmospheric Research’s (NCAR) Community Climate System Model (CCSM) version 3 and the National Center for Environmental Prediction (NCEP)/NCAR global reanalysis (NNRP). The latter is used for verification of late 20th century climate simulations from the WRF. In theory, the increase in horizontal resolution and sophistication of physical parameterizations in the WRF should improve the simulation of warm-season precipitation over the U.S., allowing a better representation of present climate and more reliable projections of future climate. This evaluation finds that the WRF is able to produce precipitation that is more realistic than that from the sources of its forcing (the CCSM and NNRP). It also diagnoses potential issues with and differences between all of the simulations completed. Specifically, the magnitude of heavy 6h average precipitation events and the frequency distribution of precipitation over the central U.S. is greatly improved. Projections from the WRF for late 21st century precipitation show decreases in average May-August (MJJA) precipitation, but an increase in the intensity of both heavy precipitation events and rain in general when it does fall. A decrease in the number of 6h periods with rainfall accounts for the overall decrease in average precipitation. The WRF also shows an increase in the frequency of very heavy to extreme 6h average events, but a decrease in the frequency of all events lighter than those over the central U.S. Overall, projections suggest an increase in the frequency of both floods and droughts during the warm-season in the central U.S.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.A33A0213B
- Keywords:
-
- 1610 GLOBAL CHANGE / Atmosphere;
- 1637 GLOBAL CHANGE / Regional climate change;
- 1854 HYDROLOGY / Precipitation