A laboratory study of the UV Absorption Spectrum of the ClO Dimer (Cl2O2) and the Implications for Polar Stratospheric Ozone Depletion
Abstract
Chlorine containing species play an important role in catalytic ozone depleting cycles in the Antarctic and Arctic stratosphere. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the majority of the observed polar ozone loss. A key step in this catalytic cycle is the UV photolysis of Cl2O2. The determination of the Cl2O2 UV absorption spectrum has been the subject of several studies since the late 1980’s. Recently, Pope et al. (J. Phys. Chem. A, 111, 4322, 2007) reported significantly lower absorption cross sections for Cl2O2 for the atmospherically relevant wavelength region, >300 nm, than currently recommended for use in atmospheric models. If correct, the Pope et al. results would alter our understanding of the chemistry of polar ozone depletion significantly. In this study, the UV absorption spectrum and absolute cross sections of gas-phase Cl2O2 are reported for the wavelength range 200 - 420 nm at ~200 K. Sequential pulsed laser photolysis of various precursors were used to produce the ClO radical and Cl2O2 via the subsequent ClO + ClO + M reaction under static conditions. UV absorption spectra of the reaction mixture were measured using a diode array spectrometer after completion of the gas-phase radical chemistry. The spectral analysis utilized the observed isosbestic points, reaction stoichiometry, and chlorine mass balance to determine the UV spectrum and absolute cross section of Cl2O2. A complementary experimental technique similar to that used by Pope et al. was also used in this study. We obtained consistent Cl2O2 UV absorption spectra using the two different techniques. The Cl2O2 absorption cross sections for wavelengths in the 300 - 420 nm range were found to be in very good agreement with the values reported previously by Burkholder et al. (J. Phys. Chem. A, 94, 687, 1990) and significantly greater than the Pope et al. values in this atmospherically important wavelength region. A possible explanation for the disagreement with the Pope et al. study will be discussed. Finally, using the Cl2O2 UV cross sections reported in this work representative atmospheric photolysis rates along with a detailed analysis of estimated uncertainties will be presented. A conclusion from this work is that the Cl2O2 absorption cross section data obtained in this work is sufficient to adequately model the observed ozone losses in the Antarctic and Arctic stratosphere.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.A21C0239P
- Keywords:
-
- 0317 ATMOSPHERIC COMPOSITION AND STRUCTURE / Chemical kinetic and photochemical properties