A new approach for on-line measurements of the chemistry of individual ultrafine particles
Abstract
Ultrafine aerosol particles, those with diameters less than 100nm, are abundant in the atmosphere and play a crucial role in climate through cloud formation and have a greater effect on human health than larger particles. The chemistry of ultrafine particles helps determine whether they will act as cloud condensation nuclei (CCN) as well as how they will affect human health. However, it is difficult to study the chemistry of ultrafine particles due to their low mass and small size for optical detection. Typically, long collection times are required to collect ultrafine particles onto substrates, leading to loss of temporal information and individual particle chemistry and source information. Single particle mass spectrometers that rely on optical detection of particles for subsequent chemical analysis cannot effectively analyze ultrafine particles. Growth of particles through condensation has been used in various sizing (i.e. condensation particle counter (CPC), cloud condensation nuclei counter (CCNc)), as well as chemical (i.e. particle into liquid system (PILS) and condensation growth and impaction system (C-GIS)) instruments. In order to study ultrafine particles, we couple a laminar flow, water condensation growth tube (GT) with an aerodynamic focusing lens aerosol time-of-flight mass spectrometer (ATOFMS). The GT used here is similar in principle to the water-based CPC. The particles are exposed to a region of high supersaturation where they grow in size by water vapor condensation. We have coupled this GT to a single particle mass spectrometry ATOFMS system. Using this combined approach, we are able to detect polystyrene latex spheres (PSLs) as small as 38nm compared to the lower size limit of 90 nm of the ATOFMS without the GT. A series of inorganic and organic chemical standards representative of ambient particles show that by evaporating the particles between the GT and ATOFMS, there is little change in the chemistry of the particles that have undergone this growth and evaporation process. We have successfully characterized ambient particles down to 50nm with this GT-ATOFMS system. This technique has great potential to expand our limited knowledge of the chemistry of ultrafine particles and their effect on both climate and human health.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2009
- Bibcode:
- 2009AGUFM.A13B0212Z
- Keywords:
-
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE / Aerosols and particles;
- 0320 ATMOSPHERIC COMPOSITION AND STRUCTURE / Cloud physics and chemistry