Keller's Conjecture on the Existence of Columns in Cube Tilings of R^n
Abstract
It is shown that if n<7, then each tiling of R^n by translates of the unit cube [0,1)^n contains a column; that is, a family of the form {[0,1)^n+(s+ke_i): k \in Z}, where s \in R^n, e_i is an element of the standard basis of R^n and Z is the set of integers.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2008
- DOI:
- 10.48550/arXiv.0809.1960
- arXiv:
- arXiv:0809.1960
- Bibcode:
- 2008arXiv0809.1960L
- Keywords:
-
- Mathematics - Combinatorics;
- Mathematics - Metric Geometry;
- 52C22;
- 05B45
- E-Print:
- 25 pages