Novel drug nanocarriers combining hydrophilic cyclodextrins and chitosan
Abstract
The aim of this study was to explore the possibility of obtaining nanoparticles (NPs) containing high amounts of cyclodextrin (CD) derivatives such as carboxymethyl-β-CD and sulphobutyl ether-β-CD. The rationale used was to combine the drug solubilizing and stabilizing properties of cyclodextrins (CDs) with the mucoadhesive properties of chitosan (CS) in a unique nanoparticulate drug delivery system. The size of the resulting NPs was affected by the nature of the CDs, ranging between 275 and 550 nm, whereas the zeta potential of the NPs was always positive and close to +35 mV. The positive zeta values, together with the results from NMR studies, suggest that CS is the major compound on the surface of the NPs, while CD molecules are strongly associated with the NP matrix. The empirical composition of the NPs was quantified by elemental analysis and the results indicated that the amount of CD associated with the NPs was strictly dependent on its electrostatic charge. Finally, in vitro stability studies indicated that the presence of CDs in the NP structure can prevent the aggregation of this nanometric carrier system in simulated intestinal fluid. Overall, this new type of NP represents an attractive drug delivery platform of particular interest for the oral administration of drugs with low bioavailability.
- Publication:
-
Nanotechnology
- Pub Date:
- May 2008
- DOI:
- 10.1088/0957-4484/19/18/185101
- Bibcode:
- 2008Nanot..19r5101T