Teasing Apart Regional Climate and Meltwater Influences on Florida Straits Sea Surface Temperature and Salinity over the past 40 kyr
Abstract
Recent reconstructions of North Atlantic salinity variability over the last glacial cycle show that abrupt climate events are linked to major reorganizations in the low-latitude hydrologic cycle, affecting large-scale changes in evaporation minus precipitation (E-P) patterns. Although there is general agreement that the Intertropical Convergence Zone (ITCZ) migrates southward during cold stadials, it remains unclear how this shift affects the net E-P budget in the North Atlantic. In order to reconstruct a high resolution record of past sea surface temperature (SST) and salinity (SSS) in the Florida Straits across abrupt climate events of the last 40 kyr, we combine Mg/Ca paleothermometry and δ18O measurements in shells from the surface-dwelling foraminifera Globigerinoides ruber in cores KNR166-2-JPC29 (24°17'N, 83°16'W; 648 m depth; 8-20 cm/kyr sed. rate) and JPC26 (24°19.61'N, 83°15.14'W; 546 m depth; 18-240 cm/kyr sed. rate) and calculate δ18OSEAWATER (δ18OSW) variability. Removal of the δ18OSW signal due to continental ice volume variation results in the ice volume-free (IVF) δ18OSW record (a proxy for SSS variability). Although most waters flowing through the Florida Straits today originate in the tropical western Atlantic, major meltwater discharges from the Mississippi River across the last deglacial period also influenced SST and SSS in the Florida Straits. To constrain periods of increased meltwater discharge, we measured Ba/Ca ratios in G. ruber from select intervals. Because riverine waters have a much higher dissolved Ba+2 concentration relative to seawater, foraminifera Ba/Ca ratios can be used as an additional proxy to constrain periods of increase riverine discharge. Initial results suggest the hydrographic history of the Florida Straits is influenced by both meltwater discharge and regional climate variability linked to the high-latitude North Atlantic. Both the IVF- δ18OSW and Ba/Ca records reveal a prolonged period from 16.0-13.0 kyr when elevated meltwater discharge was the dominant influence on surface water conditions in the Florida Straits. It is likely that SSS in the Florida Straits was significantly fresher than today during this interval. In contrast, periods of minimal meltwater influence (such as the Younger Dryas and across D-O cycles of MIS 3) are characterized by abrupt SST and SSS shifts that covary with the NGRIP δ18Oice record. SSTs in the Florida Straits cool by 1.5-2.0 °C and regional salinity increases (IVF-δ18OSW increase of 0.5-0.7‰) at the initiation of cold stadial events as the ITCZ shifts south. The most likely explanation for these rapid shifts in IVF-δ18OSW values is that moisture transport out of the North Atlantic increases when the North Atlantic cools and the ITCZ shifts southward.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFMPP23C1502S
- Keywords:
-
- 1620 Climate dynamics (0429;
- 3309);
- 1655 Water cycles (1836);
- 4901 Abrupt/rapid climate change (1605);
- 4954 Sea surface temperature