Modeling Surface Water Transport in the Central Pacific Ocean With 129I Records From Coral Skeletons
Abstract
129I occurs naturally in extremely low abundance via cosmic ray interactions in the atmosphere as well as by spontaneous fission of uranium. Oceanic concentrations of 129I have risen by several orders of magnitude during the last half century largely from environmental pollution coming from several point-source nuclear fuel reprocessing plants. In the Pacific basin, much of the increase has apparently come from the Hanford Nuclear reprocessing plant in the United States, with iodine primarily arriving via the Columbia River. Coral skeletons preserve records of 129I concentration of the surface waters from which they were deposited, yielding records with annual resolution or better. We will present three such records from different locations in the Pacific Ocean: the Solomon Islands, Easter Island and Clipperton Atoll. For this study, drill cores from living massive coral skeletons of the species Porites Lobata were collected from these sites. 129I/127I values were measured using accelerator mass spectrometry (AMS) at the University of Arizona with an NEC 3 MV Pelletron accelerator. Results from the analysis of the corals will be compared to the distribution of other mixed-layer tracers (chloro-fluorocarbons and tritium) collected during the World Ocean Circulation Experiment cruises conducted between 1990 and 2002. The 129I/127I records observed in these corals will also be compared to tracer transit time calculations determined from a 20th century simulation of the GFDL coupled-climate passive-tracer model.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFMPP13E..05B
- Keywords:
-
- 1040 Radiogenic isotope geochemistry;
- 1218 Mass balance (0762;
- 1223;
- 1631;
- 1836;
- 1843;
- 3010;
- 3322;
- 4532);
- 1616 Climate variability (1635;
- 3305;
- 3309;
- 4215;
- 4513);
- 3610 Geochemical modeling (1009;
- 8410);
- 4220 Coral reef systems (4916)