Seismic ACROSS Transmitter Installed at Morimachi above the Subducting Philippine Sea Plate for the Test Monitoring of the Seismogenic Zone of Tokai Earthquake not yet to Occur
Abstract
Here we report the first seismic monitoring system in active and constant operation for the wave propagation characteristics in tectonic region just above the subducting plate driving the coming catastrophic earthquakes. Developmental works of such a system (ACROSS; acronym for Accurately Controlled, Routinely Operated, Signal System) have been started in 1994 at Nagoya University and since 1996 also at TGC (Tono Geoscience Center) of JAEA promoted by Hyogoken Nanbu Earthquakes (1995 Jan.17, Mj=7.3). The ACROSS is a technology system including theory of signal and data processing based on the brand new concept of measurement methodology of Green function between a signal source and observation site. The works done for first generation system are reported at IWAM04 and in JAEA report (Kumazawa et al.,2007). The Meteorological Research Institute of JMA has started a project of test monitoring of Tokai area in 2004 in corporation with Shizuoka University to realize the practical use of the seismic ACROSS for earthquake prediction researches. The first target was set to Tokai Earthquake not yet to take place. The seismic ACROSS transmitter was designed so as to be appropriate for the sensitive monitoring of the deep active fault zone on the basis of the previous technology elements accumulated so far. The ground coupler (antenna) is a large steel-reinforced concrete block (over 20m3) installed in the basement rocks in order to preserve the stability. Eccentric moment of the rotary transmitter is 82 kgm at maximum, 10 times larger than that of the first generation. Carrier frequency of FM signal for practical use can be from 3.5 to 15 Hz, and the signal phase is accurately controlled by a motor with vector inverter synchronized with GPS clock with a precision of 10-4 radian or better. By referring to the existing structure model in this area (Iidaka et al., 2003), the site of the transmitting station was chosen at Morimachi so as to be appropriate for detecting the reflected wave from an anticipated fault plane of Tokai Earthquake, the boundary between Eurasian lithosphere and the subducting Philippine Sea Plate. Further several trials of new transmission protocol and also remote control are being made for the transmitter network of the next generation. The whole system appears working well as reported by Yoshida et al. (2008, This meeting).
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFMNG51A1200K
- Keywords:
-
- 0935 Seismic methods (3025;
- 7294);
- 7200 SEISMOLOGY