Ti Diffusion in Pyroxene
Abstract
Diffusion of titanium has been characterized in natural enstatite and diopside under buffered conditions and in air. The sources of diffusant for the enstatite experiments were mixtures of Mg, Si and Ti oxide powders, which were combined and heated at 1300°C overnight, and then thoroughly mixed with synthesized enstatite powder and heated for an additional day at 1300°C. Sources for diopside experiments were prepared similarly, using Ca, Mg, Si, and Ti oxide powders combined with synthesized diopside powder, with heating of source materials at 1200°C. Buffered experiments were prepared by enclosing source material and pyroxene (polished and pre-annealed under conditions comparable to those to be experienced in the experiment) in AgPd or platinum capsules, placing the metal capsule in a silica glass capsule with a solid buffer (to buffer at NNO or IW) and sealing the assembly under vacuum. Some experiments on enstatite were run in air; sample and source were placed in Pt capsules and crimped shut. Prepared capsules were then annealed in 1 atm furnaces for times ranging from 8 hours to a few months, at temperatures from 950 to 1200°C. The Ti distributions in the pyroxene were profiled with Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for Ti diffusion in a natural enstatite, for diffusion normal to the (210) cleavage face (950 - 1150°C, experiments run in air): DTi = 1.9×10-10 exp(-300 ± 44 kJ mol-1/RT) m2 sec-1. Diffusion under NNO and IW-buffered conditions is similar to that for experiments run in air, suggesting little dependence of Ti diffusion on oxygen fugacity. There is also little evidence of anisotropy, as diffusion normal to (001) does not differ significantly from diffusion for the other orientation. Preliminary findings for Ti diffusion in diopside suggest diffusivities similar to those for enstatite. Ti diffusivities in enstatite are similar to those of the trivalent REEs (Cherniak and Liang, 2007), but more than two orders of magnitude slower than those of Fe-Mg (ter Heege et al., 2006) and Cr (Ganguly et al., 2007). These respective variations may reflect the interplay of cation size and charge, or may point to the substitution of Ti on the tetrahedral site. Measurements of diffusion under a broader range of conditions and for other high field strength elements are underway to better interpret these findings. Major and trace element zoning in pyroxenes have been observed in residual peridotites and mafic cumulates. The large differences in cation mobility among Ti, Cr, and Fe-Mg in pyroxene may allow us to distinguish the dominant process that gives rise to the chemical disequilibria. In contrast to those produced by subsolidus reequilibration during cooling, the apparent diffusive boundary layer thicknesses as measured by major and trace elements in a pyroxene grain are not sensitive to the respective cation diffusion rates if zoning is produced by magmatic processes that involves dissolution- precipitation. Examples of zoning in pyroxenes produced by magmatic and subsolidus processes will be discussed. Ganguly et al. (2007) GCA 71, 3915-3925; ter Heege et al. (2006) Eos Trans. AGU 87, Fall Mtg. Suppl. MR21A-0004; Cherniak and Liang (2007) GCA 71, 1324-1340
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFMMR33A1843C
- Keywords:
-
- 1065 Major and trace element geochemistry;
- 3610 Geochemical modeling (1009;
- 8410);
- 3619 Magma genesis and partial melting (1037);
- 3620 Mineral and crystal chemistry (1042);
- 3630 Experimental mineralogy and petrology