Benefits and Risks of using Linear Anionic Polyacrylamide (LA-PAM) for Seepage Reduction in Unlined Water Delivery Canals
Abstract
As water resources continue to be constrained in the arid western United States, there is a need to improve the efficiency in how water is transported from its sources to end-users. In particular, there is a growing need for cost-effective technologies capable of reducing undesirable seepage from water delivery canals where traditional canal sealing methods, such as concrete and geomembranes, are not suitable or cost-prohibitive. One alternative is the use of a linear, anionic polyacrylamide (LA-PAM) applied as granular solid to a flowing canal. The benefits and risks of LA-PAM use in unlined water delivery canals will be discussed in context of a diverse set of experiments that were conducted in the laboratory, at the furrow-scale, and in working water delivery canals. When properly used, the application of LA-PAM reduced seepage rates between 28 and 87 percent at a cost of 78 to 213 km-1. LA-PAM provided a cost-effective tool for canal operators to better manage the volume, timing, and extent of water losses from their canals. However, these benefits must be weighed against potential risks associated with LA-PAM use. Potential risks included the release of small concentrations of residual acrylamide (AMD) monomer, a cumulative neurotoxin and a suspected human carcinogen, and potential impacts on aquatic communities and downstream users.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFMGC43C0747S
- Keywords:
-
- 1838 Infiltration;
- 1880 Water management (6334);
- 1899 General or miscellaneous