A Heated Debate: Evidence for Two Thermal Upwellings in East Africa
Abstract
East African Cenozoic magmatism records the thermal influence of one or more long-lived mantle plumes. We present primary magma compositions, mantle potential temperatures (Tp), and mantle melt fractions using PRIMELT2 in order to examine the geographic and historical distribution of upper mantle thermal anomalies in East Africa. Regional magmatism can be divided into an early flood basalt phase in Ethiopia/Yemen (~30 Ma), a longer-lived episode of basaltic magmatism in Kenya and Southern Ethiopia (~45 to 23 Ma), and a more recent phase (~23 Ma to Present) that is coincidental with the development of the East African Rift (EAR). We have carefully selected a total of 54 samples from these time periods, excluding erroneous results derived from lavas with evidence of clinopyroxene fractionation or volatile rich and pyroxenitic sources. Our results show that elevated Tp in the Ethiopian/Yemen flood basalt province (Tp max =1520°C) and in the early Kenya/S. Ethiopia magmatism (Tp max = 1510°C) are virtually identical. Our results indicate that the existing geochemical division between high and low Ti Ethiopia/Yemen flood basalts has a thermal basis: low-Ti lavas are hotter than the high-Ti lavas. Magmatism in the region subsequent to 23 Ma exhibits only minor cooling (Tp max = 1490°C), though more substantial cooling is observed in Turkana, Kenya (60°C) and Yemen (80°C). Rift lavas from Ethiopia exhibit a clear decrease in Tp away from Afar southwestward along the EAR before progressively rising again in Southern Ethiopia towards Turkana. South of Turkana, elevated Tp is observed in the western and eastern branches of the EAR surrounding the Tanzania Craton. The modern spatial distribution of Tp in EAR magmatism indicate two distinct heat sources, one in Afar and another under the Tanzania craton. We suggest that hot mantle plume material from Afar and Turkana (which may or may not merge at depth) is channeled beneath the thinned rift lithosphere and provides a significant thermal input to EAR magmatism resulting in elevated Tp, even in magmas clearly derived from the lithosphere. Our results add to the debate generated by numerous global-scale tomographic inversions that presently do not show consensus as to the number and location of low-velocity upwellings beneath East Africa.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.V53A2133R
- Keywords:
-
- 1038 Mantle processes (3621);
- 1065 Major and trace element geochemistry;
- 3610 Geochemical modeling (1009;
- 8410);
- 8410 Geochemical modeling (1009;
- 3610);
- 8411 Thermodynamics (0766;
- 1011;
- 3611)