Eruptions of Mount Erebus Volcano Constrained with Infrasound, Video, and Doppler Radar
Abstract
Co-eruptive infrasound recorded within several km of volcanoes can provide effective constraints on atmospheric accelerations or momentum exchange in the vicinity of active volcanic vents. These atmospheric perturbations can be induced by impulsive gas injection into the atmosphere (i.e., eruptive explosions), by deflection of a solid or fluid lava surface, or through a superposition of these effects. The "simple" lava lake bubble-bursting eruptions of Mount Erebus Volcano (Antarctica) provide an ideal test bed for multi- disciplinary observations of volcanic infrasound because of proximal (within few hundred meters) deployment of microphones and line-of-sight viewing geometry of cameras and radar to the vent. Erebus video observations provide timing constraints on the infrasound generation mechanisms, which include both pre- eruptive distension of the lava lake surface and gas expansion and jetting following large explosive bubble bursts. Network infrasound recordings are used to quantify the time history of explosive gas flux and cumulative yield (>103 kg of gas in ~0.5 s), which is corroborated by the video and Doppler radar observations. Infrasound records from a three-station network also show azimuthal variations, which can be attributed to non-isotropic components of the acoustic wavefield radiated during eruption. We model Erebus gas bubble bursts as a combination of symmetric gas expansion (monopole source) and gas jetting (dipole source) and corroborate this explosive asymmetry with video and Doppler radar observations.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.V51E2085J
- Keywords:
-
- 8428 Explosive volcanism;
- 8494 Instruments and techniques