Dacite Melt at the Puna Geothermal Venture Wellfield, Big Island of Hawaii
Abstract
A dacite melt was encountered during routine commercial drilling operations of injection well KS-13 at the Puna Geothermal Venture wellfield, Big Island of Hawaii. The KS-13 drill hole, drilled in 2005, is located along a segment of the Kilauea Lower East Rift Zone which erupted basalt flows from rift-parallel fissures in 1955. During the drilling of KS-13 a 75-meter interval of microdiorite containing brown glass inclusions was penetrated at a depth of 2415 m. At a depth of 2488 m a melt of dacitic composition was encountered. The melt flowed up the wellbore and was repeatedly redrilled over a depth interval of ~8 m, producing several kilograms of clear, colorless vitric cuttings at the surface. The drill bit, when recovered at the surface, was missing several carbide insert teeth. Presumably the inserts were plucked cleanly from their sintered cone sockets due to differential thermal expansion under extreme heat conditions. The dacitic glass cuttings have a perlitic texture, a silica content of 67 wgt.%, are enriched in alkalis and nearly devoid of mafic minerals with the exception of rare pyroxene phenocrysts and minor euhedral to amorphous magnetite. The melt zone is overlain by an interval of strong greenschist facies metamorphism in basaltic and dioritic dike rock. The occurrence of an anhydrous dacite melt indicates a rock temperature of approximately 1050° (1922°F) and sufficient residence time of underlying basaltic magma to generate a significant volume of differentiated material. The dacite, with an inferred temperature of 1050 °C, is separated by 526 m of rock from the deepest overlying permeable zone in KS-13 at a temperature of 356 °C. The thermal gradient through this impermeable rock section is ~700°C/526 m = 1.331 °C/m. The calculated conductive heat flux from the magma upward into the deepest zone of hydrothermal circulation is given by k×(dT/dZ)=2.9 × 1.33 = 3.83 W/m2 = 3830 mW/m2 (thermal conductivity k=2.9 W m-1 °C-1 for basalt). This heat flux is an order of magnitude greater than the average of 270-290 mW/ m2 typical for the mid-ocean ridges. The high heat flux is sufficient to power the overlying commercial geothermal wellfield which has been producing 28 MW of net electrical power continuously since 1993.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.V23A2129T
- Keywords:
-
- 3618 Magma chamber processes (1036);
- 3619 Magma genesis and partial melting (1037);
- 3625 Petrography;
- microstructures;
- and textures;
- 8424 Hydrothermal systems (0450;
- 1034;
- 3017;
- 3616;
- 4832;
- 8135);
- 8434 Magma migration and fragmentation