New 40Ar/39Ar Ages From Southwest Bolivia Refine the Timing of APVC Volcanism
Abstract
The Altiplano-Puna Volcanic Complex (APVC) of the Central Andes has produced prodigious silicic volcanism (at least 11,000 km3 of magma) over the last 10 Ma including some of the largest known ignimbrites on Earth. Despite excellent exposure, little previous work had been conducted on the timing and distribution of ignimbrite volcanism in the Lípez region of southwestern Bolivia, the heart of the APVC. To address this deficiency we have performed ~612 single crystal laser-fusion 40Ar/39Ar analyses from 39 pumice and bulk matrix samples collected from the main ignimbrite units within the Lípez region. Geochemistry of pumice and mineral samples, and paleomagnetic data are also being used to correlate individual ignimbrite units. Our new 40Ar/39Ar results establish new or refined eruption ages (with 2σ error) from the Vilama caldera at 8.41±0.02 Ma, Pastos Grandes caldera at 5.45±0.02 and 2.94±0.01 Ma, and Guacha caldera at 5.65±0.01, and 3.57±0.02 Ma. New ages were also determined for eruptions from the Panizos ignimbrite shield (6.86±0.03 Ma), Juvina ignimbrite shield (5.23±0.01 Ma), and the Laguna Colorado ignimbrite shield (2.21±0.05 and 1.95±0.03 Ma). The oldest ignimbrite we have found in the area is 10.33±0.64 Ma, a local unit beneath the Vilama ignimbrite. The youngest units have been identified west of the Guacha caldera with eruption ages of 1.70±0.6 Ma and 0.70±0.01 Ma. These results demonstrate that ignimbrite-producing eruptions in the Lípez region span the age of APVC volcanism previously established, with the largest eruptions occurring from long-lived, cyclic supervolcano caldera systems like Guacha and Pastos Grandes. The aggregate data from the APVC support the hypothesis that the APVC developed predominantly during distinct pulses of massive ignimbrite eruptions at ~8, 6, and 4 Ma and attest to episodic behavior of the magmatic system. Ignimbrites of <1 Ma, the cyclical nature of activity, and the continued geothermal presence and active local surface deformation suggest that the magma system of the APVC remains active and may produce further volcanism.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.V21C2117S
- Keywords:
-
- 1115 Radioisotope geochronology;
- 8428 Explosive volcanism;
- 8440 Calderas;
- 8455 Tephrochronology (1145)