The diffusion of water in haploanesite
Abstract
Diffusive transport of water in silicate melts is a key process in magma dynamics and volcanic eruptions, including bubble growth. Previous studies demonstrate that in additional to temperature, water content and pressure, melt composition also plays an important role in determining water diffusivity. We carried out high temperature (1311-1512°C) diffusion-couple experiments and intermediate temperature (470- 600°C) dehydration experiments to investigate H2O diffusion in a melt of haploandesitic composition. The diffusion couple is composed of an anhydrous (with <0.1 wt.% H2O) and a hydrous (with 2 wt.% H2O) haploandesitic glass. A platinum capsule is used to contain the couple and then it is welded shut. Diffusion runs are carried out in a 12.7-mm piston-cylinder apparatus at 1 GPa and superliquidus temperatures of 1584-1785 K. Infrared microscopy is applied on quenched glass to measure the profile of total H2O concentration (H2Ot). The profile shape is best fit by an error function, indicating an H2O diffusivity virtually independent of H2O concentration, consistent with the results of Behrens et al. (2004) on an Fe-bearing andesite. Dehydration experiments are performed at 743-873 K in a rapid-quench cold-seal vessel, with a heated hydrous glass losing water to 0.1 GPa Ar atmosphere. Measured diffusion profiles, however, show that water diffusivity is dependent on water content. Experimental data can be explained by H2Om being the dominating diffusant or a total H2O diffusivity proportional to total H2O content. The distinction between the high-temperature experiments where H2Ot diffusivity is apparently independent of H2Ot content, and the intermediate-temperature experiments where H2Ot diffusivity depends on H2Ot can be rationalized if OH diffusion has a higher activation energy than molecular H2O diffusion, and their comparable diffusivities at high T gradually diverge as temperature is lowered. At below 1 wt.% H2O, water diffusivity increases from rhyolite to dacite to andesite at >1300°C, and this sequence is reversed at <600°C.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.V21B2087N
- Keywords:
-
- 8428 Explosive volcanism;
- 8430 Volcanic gases;
- 8434 Magma migration and fragmentation;
- 8445 Experimental volcanism;
- 8499 General or miscellaneous