Limitation of secondary electron multiplier non-linearity on accurate U-Th isotopic determination by MC-ICP-MS
Abstract
Contemporary multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) with discrete dynode secondary electron multipliers (SEMs) can offer U-Th isotopic determinations with subpermil-permil- level precision in femtogram quantities. However, accurate isotopic measurement requires fully understanding SEM mass and intensity biases. In additional to dead-time effect, Richter et al (2001, Int. J. Mass Spectrom., 206, 105-127) reported a nonlinearity on SEMs produced by ETP and MasCom for count rates > 20 thousand counts per second (cps). We evaluated the possible biases for ion beams of 500- 1,600,000 cps on a latest MasCom SEM, SEV TE-Z/17, with more effective ion optical acceptance area (>50%) and better peak shape than previous models, used in a MC-ICP-MS, Thermo Fisher NEPTUNE. With the retarding potential quadruple lens (RPQ) turned off, ion beam intensity can be biased by only dead- time effect, which can be precisely corrected online or offline. With the RPQ on, two additional biases, an exponential-like increase of ion beam intensity from 100-100,000 s cps and an apparent dead-time effect (-2 to 2 ns) at high count rates, are observed. They are likely caused by the slightly defocused ions with a wide kinetic energy spread of ~5 eV, 10 times worse than that with thermal source, passing through the RPQ lens to the SEM, which is installed behind the focal plane. Fortunately, the two biases, which are stable during the daily measurements with the same settings of inlet system, source lenses, zoom optics, and RPQ, can be corrected effectively offline to earn accurate U-Th isotopic measurement.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.V13A2084S
- Keywords:
-
- 1000 GEOCHEMISTRY;
- 1100 GEOCHRONOLOGY;
- 1115 Radioisotope geochronology;
- 1194 Instruments and techniques;
- 4900 PALEOCEANOGRAPHY (0473;
- 3344)