Multi-stage impregnation of the lithospheric mantle at the Andrew Bain FZ (SWIR)
Abstract
The Southern ridge-transform intersection of Andrew Bain Fracture Zone (ABFZ) is interpreted as a "cold spot" in the mid-ocean ridge system being characterized by a negative thermal anomaly in the oceanic upper mantle. The negative thermal anomaly is associated to the cold-edge effect due to the great age contrast of the active ridge segments. During the oceanic expedition AB06-S23, in 2006, (organized by ISMAR-CNR, Bologna, Italy, and co-financed by PRNA, Italy) with the russian R/V N. Strakhov, several samples of abyssal peridotites have been collected. Textures and modal distribution of the samples have been investigated revealing a multistage impregnation history. Deep spinel-field impregnation assemblages (sp+cpx-ol) are followed by plagioclase-field patches and mineral trails (pl+cpx-ol) and late shallow gabbroic pockets and veins. The major elements mineral chemistry reveals compositional trends of low-P/T subsolidus partial- to-complete re-equilibration undergone by the upper mantle during the upwelling beneath the ridge. These samples have experienced variable degrees of melting and reacted with percolating melts of possible different composition. In particular, samples showing the lowest degrees of melting have interacted with MORB-like melts and pyroxenitic-derived melts in the spinel and plagioclase stability fields. The presence of these two kinds of melts might prove the presence of enriched portions scattered in a normal depleted mantle beneath ocean ridges. MELTS-based runs provide constraints to variable extents of pyroxenitic-derived melt interaction with the mantle source and crystallization at variable depth of the products of such an interaction. Supported by MIUR-PRIN Cofin project 2007
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.T43C2038P
- Keywords:
-
- 1012 Reactions and phase equilibria (3612;
- 8412);
- 1032 Mid-oceanic ridge processes (3614;
- 8416);
- 1037 Magma genesis and partial melting (3619);
- 1038 Mantle processes (3621);
- 1065 Major and trace element geochemistry