Reconstructing the history of major Greenland glaciers since the Little Ice Age
Abstract
The Greenland Ice Sheet may have been responsible for rapid sea level rise during the last interglacial period and recent studies indicate that it is likely to make a faster contribution to sea-level rise than previously believed. Rapid thinning and velocity increase has been observed on most major outlet glaciers with terminus retreat that might lead to increased discharge from the interior and consequent further thinning and retreat. Potentially, such behavior could have serious implications for global sea level. However, the current thinning may simply be a manifestation of longer-term behavior of the ice sheet as it responds to the general warming following the Little Ice Age (LIA). Although Greenland outlet glaciers have been comprehensively monitored since the 1980s, studies of long-term changes mostly rely on records of the calving front position. Such records can be misleading because the glacier terminus, particularly if it is afloat, can either advance or retreat as ice further upstream thins and accelerates. To assess whether recent trends deviate from longer-term behavior, we examined three rapidly thinning and retreating outlet glaciers, Jakobshavn Isbrae in west, Kangerdlussuaq Glacier in east and Petermann Glacier in northwest Greenland. Glacier surface and trimline elevations, as well as terminus positions were measured using historical photographs and declassified satellite imagery acquired between the 1940s and 1985. These results were combined with data from historical records, ground surveys, airborne laser altimetry, satellite observations and field mapping of lateral moraines and trimlines, to reconstruct the history of changes since the (LIA) up to the present. We identified several episodes of rapid thinning and ice shelf break-up, including thinning episodes that occurred when the calving front was stationary. Coastal weather station data are used to assess the influence of air temperatures and intensity of surface melting, and to isolate glacier changes likely associated with changes in glacier dynamics. We also examined the potential influence of geologic control, including the effect of increased heat flux and high rates of subglacial melt suggested by geophysical data.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.C23A0594C
- Keywords:
-
- 0720 Glaciers;
- 0726 Ice sheets;
- 0758 Remote sensing;
- 0762 Mass balance (1218;
- 1223);
- 0776 Glaciology (1621;
- 1827;
- 1863)