Snow cover data records from satellite and conventional measurements
Abstract
A major goal of snow-related research in the Climate Research Division of Environment Canada is the development of consistent snow cover information from satellite and in situ data sources for climate monitoring and model evaluation. This work involves new satellite algorithm development for reliable mapping of snow water equivalent (SWE), snow cover extent (SCE) and snow cover onset and melt dates, evaluation of existing snow cover products such as the NOAA weekly data set with in situ and satellite data, and the reconstruction and reanalysis of snow cover information from the application of physical snow models, geostatistics and data assimilation methods. In the context of the International Polar Year, a major effort is being made to develop and evaluate snow cover information over the Arctic region with a particular focus on the dynamic spring melt period where positive feedbacks to the climate system are more pronounced. Assessment of the NOAA daily and weekly SCE products with MODIS and QuikSCAT derived datasets identified a systematic late bias of 2-3 weeks in snow-off dates over northern Canada. This bias was not observed over northern Eurasia which suggests that regional differences in variables such as lake fraction and cloud cover are systematically influencing the accuracy of the NOAA product over northern Canada. Considerable progress has been made in deriving passive microwave derived SWE information over sub- Arctic regions of North America where pre-existing algorithms were unable to account for the influence of forest cover and lake ice. Previous uncertainties in retrieving SWE across the boreal forest have been resolved with the combination of 18.7 and 10.7 GHz measurements from the Advanced Microwave Scanning Radiometer (AMSR-E; 2002-present). Full time series development (1978-onwards) remains problematic, however, because 10.7 GHz measurements are not available from the Special Sensor Microwave/Imager (1987-present). Satellite measurements coupled with lake ice model simulations have illustrated frequency dependent, seasonally evolving relationships between brightness temperature and lake fraction across tundra regions. A potential solution based on the temporal evolution of 37 GHz AMSR-E measurements shows some promise as this was found to be significantly correlated with field measurements of tundra SWE, and to be relatively insensitive to lake fraction. New pan-Arctic (N 60°N) snowmelt onset and end date records (2000-2006) were produced from enhanced resolution (4.45 km) QuikSCAT (QSCAT) Ku-band backscatter measurements. The goal is to merge this with melt onset information from other components of the cryosphere (e.g. glaciers, ice caps, ice sheets, lake ice, sea ice) to provide an integrated circumpolar melt onset and duration dataset for climate monitoring and research on cryosphere-climate links and feedbacks. A major challenge is expanding the relatively short time period of Ku-band satellite measurements with historical C-band data (i.e. from ERS-1). Geostatistical methods and snow cover modeling were used to develop a 10-km gridded SWE dataset over Quebec from 1970-2005 for climate studies and evaluation of the performance of the Canadian Regional Climate Model.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.C21D..01D
- Keywords:
-
- 0736 Snow (1827;
- 1863);
- 0758 Remote sensing