Functional genomic study of the environmentally important Desulfovibrio /Methanococcus syntrophic co-culture.
Abstract
The use of microbe-oriented bioremediation for ameliorating extensive environmental pollution has fostered fundamental and applied studies of environmentally relevant microorganisms such as Desulfovibrio vulgaris, Shewanella oneidensis and Geobacter metallireducens.. Concurrently, there has been an increasing appreciation that the physiology of these organisms in pure culture is not necessarily representative of its activities in the environment. To enable a better understanding of microbial physiology under more environmentally relevant conditions, the syntrophic growth between the sulfate reducing bacterium, D. vulgaris and the hydrogenotrophic methanogen, Methanococcus maripaludis serves as an ideal system for laboratory studies. Cell wide analyses using transcript, proteomics and metabolite analysis have been widely used to understand cellular activity at a molecular level. Using D. vulgaris and M. maripaludis arrays, and the iTRAQ proteomics method, we studied the physiology of the D. vulgaris / M. maripaludis syntrophic co- cultures. The results from this study allowed us to identify differences in cellular response in mono-culture vs. co-culture growth for both D. vulgaris and M. maripaludis.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.B44A..06M
- Keywords:
-
- 0465 Microbiology: ecology;
- physiology and genomics (4840)