Toward a predictive model for water and carbon fluxes of non-native trees in urban habitats
Abstract
There is considerable interest in estimating uptake of water and carbon by urban trees, in order to assess some of the major costs and benefits associated with maintaining or expanding urban tree cover. However, making large-scale estimates of water and carbon fluxes is challenging in urban ecosystems, where community composition and environmental conditions are highly altered and experimental data is sparse. This is particularly true in regions such as southern California, where few trees are native, yet many species can flourish given supplemental irrigation. In such scenarios one practical way to scale water and carbon fluxes may be to identify reliable traits which can be used to predict gas exchange when trees are transplanted to a new environment. To test this approach, leaf level gas exchange measurements were conducted on eight common urban tree species within the Los Angeles basin. The objective was to determine how well gas exchange parameters, including maximum photosynthesis and stomatal conductance, sensitivity of stomatal conductance to vapor pressure deficit (VPD), and water use efficiency (WUE), can be predicted based on the native habitat and climate (temperature and precipitation) of each study species. All of the species studied naturally occur in humid tropical or subtropical climate zones where precipitation varies widely from ~400 - 3000 mm per year. We found Jacaranda (Jacaranda chelonia) and honey locust (Gleditsia triacanthos) to have the highest photosynthesis and reference (at VPD=1 kPa) conductance, and to be most sensitive to VPD. WUE was found to be greatest in Indian laurel fig (Ficus microcarpa), rose gum (Eucalyptus grandis) and Queensland lacebark (Brachychiton discolor). The relative ordering of maximum photosynthesis and conductance across species was not entirely predictable based on our current knowledge of the native habitats of each species: several other species had similar native climates to Jacaranda and honey locust, yet had lower photosynthesis and conductance. However, WUE generally followed the expected trends, with species predicted to have low conductance showing higher WUE. This implies that WUE is strongly genetically controlled and may be predictable with knowledge of imported species' native habitat. Other traits, such as leaf nitrogen and isotopes, are also being investigated as proxies for detailed gas exchange measurements in this ecosystem. Further refinement of predictive factors will facilitate conceptual and quantitative models that can be used for robust scaling of water and carbon fluxes from trees to urban regions.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.B43D0459M
- Keywords:
-
- 0426 Biosphere/atmosphere interactions (0315);
- 1632 Land cover change;
- 1813 Eco-hydrology;
- 1852 Plant uptake