A Recent Shift in the Carbon Balance of High-latitude Terrestrial Ecosystems in Response to Changes in Climate and Disturbance Regime
Abstract
Analyses of the global carbon budget suggest that terrestrial ecosystems have been responsible for slowing the rate of anthropogenic CO2 build-up in the atmosphere through carbon uptake and storage, with northern extratropical regions responsible for most of this land-based CO2 sink. However, recent changes in atmospheric chemistry, climate trends, disturbance regimes, land use and management systems in northern high latitude regions have the potential to alter the terrestrial sink of atmospheric CO2. To determine the recent trends in the carbon balance of the arctic and boreal ecosystems of this region, we performed a retrospective analysis of terrestrial ecosystem dynamics across the pan-arctic (north of 45°N latitude) using a process-based biogeochemistry model. The results of the simulations suggest a shift in direction of the net flux from the terrestrial sink of earlier decades to a net source on the order of 8.5 Tg C per year between 1997 and 2006. The positive carbon balance (sink) estimated for tundra regions is consistent with observations suggesting a "greening" of, or an increase in productivity in, these ecosystems. However, the simulation framework and subsequent analyses presented in this study attribute the overall shift in regional carbon balance primarily to a large loss of carbon as a result of "browning" in boreal forest ecosystems. Model results suggest that primary productivity of the boreal forest declined over this recent time period in response to a decreasing trend in water balance. However, the substantial release of CO2 as a direct result of the large area of boreal forest burned during the past decade was the largest signal in the overall negative carbon balance for the pan-arctic region. Our results, along with those of other recent studies, emphasize the importance of changes in the disturbance regime (e.g., fire events and insect outbreaks) in the weakening and possible disappearance of the terrestrial carbon sink in high latitude ecosystems.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.B31D0314H
- Keywords:
-
- 0414 Biogeochemical cycles;
- processes;
- and modeling (0412;
- 0793;
- 1615;
- 4805;
- 4912);
- 0426 Biosphere/atmosphere interactions (0315);
- 0428 Carbon cycling (4806);
- 0439 Ecosystems;
- structure and dynamics (4815);
- 1632 Land cover change