Analysis of Forest Fire Disturbance in the Western United States Using Landsat Time Series Images: 1985 to 2005
Abstract
In this study we used two different disturbance maps (both utilizing 30 m resolution Landsat imagery) to assess disturbance trends in Western US forests. The first are maps developed by the NAFD project (North American Forest Dynamics). Each NAFD data cube contains an annual-biennial record of forest disturbance events from 1984-2005. We complimented the NAFD maps with MTBS maps (Monitoring Trends in Burn Severity). MTBS solely maps fire disturbance, recording historical (1985-2005) and contemporary burn severity and fire perimeter across the United States. We used Landsat time series stacks for four locations: Oregon (Landsat path 45 row 29), California (p43r33), Idaho (p41r29), and Utah (p32r37). In all four stacks, fire was a relatively small percentage of the total forest disturbance (ranging from 8% in Utah to 27% in Oregon for the entire 20 year period). We also found that the years with greatest burned area were years with a high aridity index (lower precipitation and higher temperatures), a condition necessary, but not sufficient for fire activity. To assess post-disturbance vegetation regrowth we used two spectral indices, the Normalized Difference Vegetation Index (NDVI) and the Normalized Burn Ratio (NBR). Both indices are sensitive to well-defined spectral paths that forests follow during and after disturbance. As expected, NDVI and NBR were lowest (highest) for the highest (lowest) severity class burned area. However, NBR and NDVI only appear to respond to vegetative reflectance in the first decade after a burn. Therefore, they give useful information on location, timing, and magnitude of disturbance, but direct measurement of biomass with other sensors would be necessary to obtain additional ecological information.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2008
- Bibcode:
- 2008AGUFM.B31D0312W
- Keywords:
-
- 0480 Remote sensing;
- 1632 Land cover change