Deformation Rates From Climate Cycles in Marine Synorogenic Turbidites, Jaca Basin, Spanish Pyrenees
Abstract
Synsedimentary structures provide a link between depositional and deformational processes in orogenic belts. Marine growth strata offer great promise in determining precise long-term deformation rates such as uplift, shortening, fault-slip, and folding rates. Magnetostratigraphy and cyclostratigraphy of the Eocene Arguis Fm., a delta slope deposit and the overlying delta plain Belsue-Atares Fm. monitors the varying pace of deformation at Pico del Aguila, a transverse decollement fold in the south Pyrenean foothills. Anhysteretic remanent magnetization (ARM) data show hierarchical cyclicity at all predicted Milankovitch frequencies. ARM is a proxy for fine-grained detrital magnetite concentration. The age distorting effects of pre-lithification compaction on bed thickness and on the rock and paleomagnetic data series were removed using empirical calibration of anisotropy of anhysteretic remanence magnetization to volume loss from laboratory compaction experiments. The decompacted ARM depth domain was converted to time using an improved magnetostratigraphy within the growth section. Tuning filtered ARM data series to the precession index according to the LA2004 orbital model refined the magnetostratigraphic time scale. The precession-tuned growth strata mapped with precision GPS record variable folding rates at 100skyr timescales for 7 Myr and55° of limb tilt. Folding rates accelerate twice to ~30°/Myr and are punctuated by more gradual decelerations to 0-3°/Myr. Submarine folding rates at Pico del Aguila are attributed to episodic thrusting in the fold core along a roof ramp fault and along the basal decollement. Formation-scale deposition in the Paleogene wedge-top basin responded to tectonic forcing, however, clastic facies patterns in the prodeltaic and slope environments reflect regional uplift controlling sediment supply, sea level variations controlling delta front position and climate forcing (e.g. monsoon strength and frequency, pedogenesis) of runoff variability and ecology in intermountain watersheds. Lithologic parameters sensitive to sea level, such as bed thickness and grain size variations in the turbidite section record strong obliquity and eccentricity modulation, whereas, the ARM derived magnetite concentrations record terrestrial watershed sensitive processes such as aridity and windiness operating at precessional time scales.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2007
- Bibcode:
- 2007AGUFMOS33A0999A
- Keywords:
-
- 1520 Magnetostratigraphy;
- 1540 Rock and mineral magnetism;
- 4946 Milankovitch theory;
- 8005 Folds and folding;
- 8169 Sedimentary basin processes