NASA Earth Science Research Results for Improved Regional Crop Yield Prediction
Abstract
National agencies such as USDA Foreign Agricultural Service (FAS), Production Estimation and Crop Assessment Division (PECAD) work specifically to analyze and generate timely crop yield estimates that help define national as well as global food policies. The USDA/FAS/PECAD utilizes a Decision Support System (DSS) called CADRE (Crop Condition and Data Retrieval Evaluation) mainly through an automated database management system that integrates various meteorological datasets, crop and soil models, and remote sensing data; providing significant contribution to the national and international crop production estimates. The "Sinclair" soybean growth model has been used inside CADRE DSS as one of the crop models. This project uses Sinclair model (a semi-mechanistic crop growth model) for its potential to be effectively used in a geo-processing environment with remote-sensing-based inputs. The main objective of this proposed work is to verify, validate and benchmark current and future NASA earth science research results for the benefit in the operational decision making process of the PECAD/CADRE DSS. For this purpose, the NASA South American Land Data Assimilation System (SALDAS) meteorological dataset is tested for its applicability as a surrogate meteorological input in the Sinclair model meteorological input requirements. Similarly, NASA sensor MODIS products is tested for its applicability in the improvement of the crop yield prediction through improving precision of planting date estimation, plant vigor and growth monitoring. The project also analyzes simulated Visible/Infrared Imager/Radiometer Suite (VIIRS, a future NASA sensor) vegetation product for its applicability in crop growth prediction to accelerate the process of transition of VIIRS research results for the operational use of USDA/FAS/PECAD DSS. The research results will help in providing improved decision making capacity to the USDA/FAS/PECAD DSS through improved vegetation growth monitoring from high spatial and temporal resolution remote sensing datasets; improved time-series meteorological inputs required for crop growth models; and regional prediction capability through geo-processing-based yield modeling.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2007
- Bibcode:
- 2007AGUFMIN41B..07M
- Keywords:
-
- 0402 Agricultural systems;
- 0430 Computational methods and data processing;
- 0434 Data sets;
- 0480 Remote sensing