Setting of the Father's Day Eruption at Kilauea
Abstract
The Father's Day eruption and associated intrusion took place within a 10-km segment of Kilauea's east rift zone between Hi`iaka and Napau Craters--a segment that has had more numerous eruptions and intrusions than any other of comparable length during the past 200, probably the past 1000, years. Fifteen known eruptions started in this area in the past 200 years: 1840, 1922, 1923, 1962, August and October 1963, March and December 1965, August and October 1968, February and May 1969, May and November 1973, and March 1980 (only 3 cubic meters!). Three others, not previously designated as distinct eruptions despite having all the appropriate characteristics, took place during on-going eruptions: two in `Alo`i Crater in 1970 and 1972, and one in Napau Crater in 1997. Two of the largest shields on the east rift zone formed during long-lasting eruptions within this area--Kane Nui o Hamo at an unknown date, perhaps the 11-12th century, and Mauna Ulu (1969-1974). In addition, many small intrusions without eruptions are known. Seven short eruptions punctuated a prolonged eruption: four within the segment during the Mauna Ulu eruption, two at the summit and southwest rift zone during that same eruption, and one in Napau Crater in 1997 during the Pu`u `O`o eruption. Thus the Father's Day eruption is not unique by virtue of taking place during an ongoing eruption elsewhere along the rift zone. The increased frequency of activity in the segment during the 20th century is obvious, particularly after 1962. For most of the past 1,000 years, eruptions were centered at Kilauea's summit, with significant but lesser activity along the rift zones. A large summit deflation in 1924 ended the nearly continuous lava lake in Halemaumau, eventually leading to the past 5 decades of dominantly east rift zone activity. This segment of the rift zone contains most of the pit craters on Kilauea and gradually changes from a SE trend near the caldera to an ENE trend that characterizes the rest of the zone. The Koa`e fault system joins the east rift zone at the curve. The complex structural setting likely affects the frequency of magmatic activity in the segment. All of the eruptive and intrusive activity results in storage of isolated magma bodies. Not surprisingly, petrologists find evidence that summit magma mixes with stored, fractionated magma. The area near Makaopuhi Crater and Kane Nui o Hamo is a particular focus, inferred since the mid-1960s to harbor a shallow magma reservoir. All of the eruptions and intrusions are accompanied by sharp deflation and shallow seismicity at the summit and shallow seismicity and uplift along the intrusion or eruptive fissures. Most often, no seismicity occurs between the summit and the area of intrusion or eruption. Within that area, seismicity commonly migrates downrift but occasionally uprift. Similarly, crack opening generally progresses downrift, with a few exceptions. Cracks generally trend about 65 degrees and can be either left- or right-stepping. Cracks open along azimuths of 155-175, with local exceptions. There is no structural difference between eruptive cracks (fissures) and non- eruptive cracks. Single eruptive fissures rarely exceed 200 m in length, instead stepping within en echelon zones above a presumably linear dike. Since the late 1960s, widening has been measured across the active area during eruptions and intrusions, first by EDM and then by satellite-based systems. The opening is nearly symmetrical within the rift zone, but farther out the north flank barely responds whereas the south flank moves seaward. Available leveling data show uplift on either side of the dike and subsidence along the crest. Examples of deformation in the 1960s and 1970s will be presented, and bibliographic references to past activity will be available.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2007
- Bibcode:
- 2007AGUFM.V51H..08S
- Keywords:
-
- 8414 Eruption mechanisms and flow emplacement;
- 8419 Volcano monitoring (7280);
- 8425 Effusive volcanism;
- 8486 Field relationships (1090;
- 3690)