The Lake Forest Tuff Ring, Lake Tahoe, CA: Age and Geochemistry of a Post-arc Phreatomagmatic Eruption
Abstract
The Lake Tahoe region of the northern Sierra Nevada consists of Mesozoic plutonic rocks blanketed by Mio- Pliocene arc volcanic rocks and locally overlain by < 2.5 Ma post-arc lavas. Several volcanic features along the Lake Tahoe shoreline indicate that magmas commonly erupted into shallow regions of the lake during the last 2.5 Ma, including the Eagle Rock vent (Kortemeier and Schweickert 2007), Tahoe City pillow lavas and palagonite layers, and the Lake Forest tuff ring (Sylvester et al., 2007). Here we report on the age and composition of the rocks at Lake Forest, aiming to identify the source of the volcanic rocks compared to arc and post-arc lavas in the area. The low-relief Lake Forest tuff ring, located on the lakeshore west of Dollar Point, consists of radially outward-dipping layers composed primarily of loosely-cemented angular, microvesicular lava fragments with minor basaltic bombs and a scoria pile at the east end of the exposed ring. Most fragments are poorly phyric, and two samples are andesites similar to post-arc lavas sampled at higher elevations. The bombs are vesicular, poorly olivine/plagioclase-phyric basaltic andesites with chilled margins and glassy matrices. Scoria in the scoria pile, which we tentatively interpret as a slump, are similar texturally to the bombs but are more silica-rich. Chemically, the fragments, bombs and scoria are more primitive (higher Mg number) than local post-arc and arc lavas, and have trace element ratios and normalized incompatible element patterns similar to, but not identical to, local post-arc lava flows. Thus the Lake Forest tuff ring was the product of a shoreline eruptive event and did not form from lavas flowing downslope into the water. The fragments, bombs and scoria each have different radiogenic isotopic compositions and incompatible element ratios, indicating that primary magma compositions varied during the eruption(s) that produced the tuff ring. Our ongoing geochronological analyses will help constrain the timing of magmatism and the formation of Lake Tahoe.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2007
- Bibcode:
- 2007AGUFM.V31B0495C
- Keywords:
-
- 1033 Intra-plate processes (3615;
- 8415);
- 1040 Radiogenic isotope geochemistry;
- 1065 Major and trace element geochemistry;
- 8428 Explosive volcanism