Th-Pb Monazite-in-Garnet Ages From the Greater Himalayan Sequence of Central Nepal
Abstract
431 new Th-Pb ages have been determined from rocks of the Greater Himalayan Sequence (GHS) of central Nepal. Some of these ages are reported by Martin et al. (2007, Chem. Geol.), most have not been reported previously. 42 samples were collected from transects along Kali Gandaki, Modi Khola, Seti Nadi, Madi Nadi, Nayu Ridge, and Marsyangdi Nadi in the Annapurna region, with three transects extending across the GHS and three transects concentrated near the base of the sequence. Garnet crystals were extracted from the samples, and monazite inclusions were identified by BSE imaging and then analyzed by LA-MC-ICPMS with a 10 micron laser beam. Where possible, inclusions were sampled from both cores and rims of the garnet crystals. The resulting ages belong to four groups: (1) 3 ages (all cores) between 801 Ma and 1407 Ma that are inherited from GHS protoliths, (2) 42 ages (all cores) from 550 Ma to 400 Ma (peak age of 487 Ma) that record early Paleozoic prograde metamorphism, (3) 102 ages (nearly all cores) scattered between 400 Ma and ~50 Ma that are interpreted as early Paleozoic grains which have experienced either Pb loss or overgrowth of Tertiary monazite, and (4) 284 ages (2/3 cores, 1/3 rims) between ca. 50 Ma and ca. 10 Ma, with cores only slightly (avg of 1.5 m.y.) older than rims. The Tertiary ages consistently young northward/upsection from ca. 35 to ca. 18 Ma, and in Marsyangdi Nadi define two separate panels that are interpreted to be imbricated along a north-dipping thrust fault. This fault is near the base of sillimanite-bearing rocks, similar to the Langtang thrust (Kohn et al. 2005, JMG), and may be partly responsible for the inverted metamorphic gradient discussed by many previous workers. Our preferred structural scenario is that the Tertiary monazite ages record progressive burial of the GHS by shortening in the Tethyan thrust belt between ca. 35 and ca. 18 Ma, termination of this metamorphism due to onset of motion along the MCT, and ca. 10 Ma imbrication of the GHS along the fault described above. This fault operated either as an out-of-sequence south-vergent thrust that merges with the MCT to the north, or a south- dipping backthrust that formed the roof of a south-vergent tectonic wedge of GHS. Argon-muscovite cooling ages in GHS and upper Lesser Himalayan rocks are consistent with either scenario, but geological evidence favors the second explanation.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2007
- Bibcode:
- 2007AGUFM.T13H..01G
- Keywords:
-
- 1115 Radioisotope geochronology;
- 8104 Continental margins: convergent;
- 8110 Continental tectonics: general (0905);
- 8178 Tectonics and magmatism