Earthquake Early Warning: Real-time Testing of an On-site Method Using Waveform Data from the Southern California Seismic Network
Abstract
We have implemented an on-site early warning algorithm using the infrastructure of the Caltech/USGS Southern California Seismic Network (SCSN). We are evaluating the real-time performance of the software system and the algorithm for rapid assessment of earthquakes. In addition, we are interested in understanding what parts of the SCSN need to be improved to make early warning practical. Our EEW processing system is composed of many independent programs that process waveforms in real-time. The codes were generated by using a software framework. The Pd (maximum displacement amplitude of P wave during the first 3sec) and Tau-c (a period parameter during the first 3 sec) values determined during the EEW processing are being forwarded to the California Integrated Seismic Network (CISN) web page for independent evaluation of the results. The on-site algorithm measures the amplitude of the P-wave (Pd) and the frequency content of the P-wave during the first three seconds (Tau-c). The Pd and the Tau-c values make it possible to discriminate between a variety of events such as large distant events, nearby small events, and potentially damaging nearby events. The Pd can be used to infer the expected maximum ground shaking. The method relies on data from a single station although it will become more reliable if readings from several stations are associated. To eliminate false triggers from stations with high background noise level, we have created per station Pd threshold configuration for the Pd/Tau-c algorithm. To determine appropriate values for the Pd threshold we calculate Pd thresholds for stations based on the information from the EEW logs. We have operated our EEW test system for about a year and recorded numerous earthquakes in the magnitude range from M3 to M5. Two recent examples are a M4.5 earthquake near Chatsworth and a M4.7 earthquake near Elsinore. In both cases, the Pd and Tau-c parameters were determined successfully within 10 to 20 sec of the arrival of the P-wave at the station. The Tau-c values predicted the magnitude within 0.1 and the predicted average peak-ground-motion was 0.7 cm/s and 0.6 cm/s. The delays in the system are caused mostly by the packetizing delay because our software system is based on processing miniseed packets. Most recently we have begun reducing the data latency using new qmaserv2 software for the Q330 Quanterra datalogger. We implemented qmaserv2 based multicast receiver software to receive the native 1 sec packets from the dataloggers. The receiver reads multicast packets from the network and writes them into shared memory area. This new software will fully take advantage of the capabilities of the Q330 datalogger and significantly reduce data latency for EEW system. We have also implemented a new EEW sub-system that compliments the currently running EEW system by associating Pd and Tau-c values from multiple stations. So far, we have implemented a new trigger generation algorithm for real-time processing for the sub-system, and are able to routinely locate events and determine magnitudes using the Pd and Tau-c values.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2007
- Bibcode:
- 2007AGUFM.S13C1445S
- Keywords:
-
- 7200 SEISMOLOGY;
- 7203 Body waves;
- 7212 Earthquake ground motions and engineering seismology;
- 7215 Earthquake source observations (1240);
- 7294 Seismic instruments and networks (0935;
- 3025)